
S U P P O RT F R A M E W O R K F O R O B S TA C L E D E T E C T I O N O N
A U T O N O M O U S T R A I N S

by
Michael Gschwandtner

Dissertation submitted to the
Faculty of Natural Sciences, University of Salzburg

in partial fulfillment of the requirements
for the Doctoral Degree

Thesis Supervisor
Univ.-Prof. Mag. Dr. Andreas Uhl

Department of Computer Sciences
University of Salzburg
Jakob-Haringer-Str. 2

5020 Salzburg, AUSTRIA

Salzburg, September 2012

Michael Gschwandtner: Support framework for obstacle detection on au-
tonomous trains, © September 2012

Dedicated to the loving memory of Friedrich Gschwandtner.

You were always proud of me. I hope you would have been proud of
this work too. 1924 – 2011

A B S T R A C T

Autonomous driving vehicles are a rapidly emerging technlogy that
will radically transform the face of public and personal transportation
in the near future. This work is part of project autoBAHN, which has
the goal to develop an autonomous driving train and in turn prevent
small railroad branch lines from beeing shut down due to cost sav-
ing measures. The focus of research in the field of sensors used for
autonomous vehicles is on the detection of obstacles. However, detect-
ing obstacles is only a part of an autonomous driving vehicle. This
work aims at providing the basis for making a complete autonomous
driving train possible. This basis is a combination of sensor calibra-
tion techniques, track detection for railroads to classify obstacles and
non-obstacles and simulation of sensor data for the verification of the
individual underlying algorithms.

Z U S A M M E N FA S S U N G

Öffentlicher Verkehr und Individualverkehr werden sich in Zukunft
durch autonom fahrende Fahrzeuge stark verändern. Neben autonom
fahrenden Autos sind im Speziellen auch autonome Züge ein wichtiger
Faktor. Diese Arbeit ist Teil eines Projektes (autoBAHN), das sich mit
der Frage beschäftigt, ob autonom fahrende Züge die Schließung un-
rentabler Nebenbahnen verhindern können. Für ein autonom fahren-
des Fahrzeug ist die Erkennung von Hindernissen eine zentrale Auf-
gabe. Forschung im Bereich autonomer Fahrzeuge beschäftigt sich
intensiv mit dem Problem der Hinderniserkennung. Um aber einen
vollständig autonom fahrenden Zug zu entwickeln, reicht es nicht, sich
nur mit reiner Hinderniserkennung zu beschäftigen. Grundlagen für
einen autonom fahrenden Zug sind unter anderem die Kalibrierung
der verschiedenen Sensor-Technologien, die Erkennung der Schienen
unmittelbar vor dem Zug, um Gefahrenzonen zu erkennen und die
Simulation der Sensordaten, um die zugrunde liegenden Algorithmen
verifizieren zu können.

iv

P U B L I C AT I O N S

Some ideas and figures of Chapter 2 and Chapter 3 have appeared
previously in ([17])

M. Gschwandtner, R. Kwitt, W. Pree, and A. Uhl. Infrared camera calibra-
tion for dense depth map construction. In Proceedings of the IEEE Intelligent
Vehicles Symposium (IV ’11), ©IEEE

Some ideas and figures of Chapter 5 have appeared previously in
([19])

M. Gschwandtner, W. Pree, and A. Uhl. Track detection for autonomous
trains. In Advances in Visual Computing, volume 6455 of Lecture Notes in
Computer Science, (ISVC 2010), ©Springer-Verlag Berlin, Heidelberg

Some ideas and figures of Chapter 6 have appeared previously in
([18, 34])

M. Gschwandtner, R. Kwitt, W. Pree, and A. Uhl. BlenSor: Blender Sen-
sor Simulation Toolbox. In Proceedings of the 7th international conference on
Advances in visual computing - Volume Part II, volume 6939 of ISVC’11,
©Springer-Verlag Berlin, Heidelberg

P. Marion, R. Kwitt, B. Davis, and M. Gschwandtner. Pcl and paraview -
connecting the dots. In IEEE CVPR Workshop on Point Cloud Processing
(PCP ’12), ©IEEE

Other publications by the author which are unrelated to this thesis
([16, 20]):

M. Gschwandtner, M. Liedlgruber, A. Uhl, and A. Vécsei. Experimental
study on the impact of endoscope distortion correction on computer-assisted
celiac disease diagnosis. In Proceedings of the 10th International Confer-
ence on Information Technology and Applications in Biomedicine (ITAB’10),
©IEEE

M. Gschwandtner, J. Hämmerle-Uhl, Y. Höller, M. Liedlgruber, A.
Uhl, and A. Vécsei. Improved endoscope distortion correction does not
necessarily enhance mucosa-classification based medical decision support
systems. In Proceedings of the IEEE International Workshop on Multimedia
Signal Processing (MMSP’12), ©IEEE

v

Doing linear scans over an associative array
is like trying to club someone to death with a loaded Uzi.

— Larry Wall

A C K N O W L E D G M E N T S

I want to thank everybody who has provided valuable input during
my work on this thesis, Roland Kwitt and Stefan Huber for their
opinion on many of the topics in this work. I want to thank Andreas
Uhl for beeing a great supervisor and an endless resource of fresh
ideas.

Special thanks goes to my wife Anne-Marie for just beeing there
when I needed her and beeing patient enough to let me finish my
work but not too patient to help me meet my deadlines.

vi

C O N T E N T S

i introduction 1

1 introduction 2

1.1 Vehicle 2

1.2 Sensors 3

1.2.1 Velodyne 5

1.2.2 IBEO 5

1.2.3 Infrared 5

1.2.4 Monocular cameras 5

1.2.5 Stereo cameras 6

1.3 Processing platform 6

1.3.1 ROS 7

1.3.2 LCM 8

1.4 Visualization 8

ii calibration 11

2 camera calibration 12

2.1 Pinhole camera model 12

2.1.1 Re-projection error 14

2.2 Calibration 15

2.2.1 Checkerboard pattern 16

2.2.2 Far-infrared camera calibration 17

3 sensor to vehicle calibration 23

3.1 Camera to vehicle calibration 25

3.1.1 Extrinsic calibration through point correspon-
dences 25

3.1.2 Extrinsic calibration through parallel lines 26

3.1.3 Joint LIDAR and camera calibration 30

3.1.4 Experiments 34

iii track detection 37

4 obstacles 38

4.1 Loading Gauge 38

4.2 Track clearance 39

4.2.1 Naive approach: static outline 40

4.2.2 Dynamic outline 40

5 track detector 43

5.1 Comparison Street vs. Railway 43

5.2 Inverse Perspective Mapping 47

5.3 Pre-processing 48

5.4 Dynamic mask 50

5.5 Local maxima search 51

5.5.1 Block based thresholds 52

vii

contents viii

5.6 Blob detection (connected components) 53

5.7 Line-segment fitting 54

5.8 Line-segment filtering 54

5.9 Curve fitting 55

5.9.1 Polynomial fitting 56

5.9.2 Rotated polynomial curve 57

5.9.3 Track candidates 59

5.10 Hough Map 61

5.11 Results 64

iv sensor simulation 69

6 sensor simulation 70

6.1 Motivation 70

6.2 Simulation 72

6.3 Scanning principle 72

6.3.1 Rotating LIDAR 73

6.3.2 Line LIDAR 77

6.3.3 Time-of-Flight (ToF) Camera 78

6.3.4 Stereo sensors 79

6.3.5 Reflection 82

6.3.6 Color information 83

6.3.7 Ground Truth 84

6.4 Building a simulation 85

6.4.1 Simulation accuracy versus processing costs 85

6.4.2 Using the Physics Engine 88

6.4.3 Exporting Motion Data 88

6.5 Experimental Results 88

6.5.1 Reproducibility 89

6.5.2 Scalability 89

v conclusion 93

7 conclusion 94

7.1 False positive detection 94

7.2 Depth Map Estimation 95

7.3 Sensor simulation 97

7.4 Acknowledgements 97

vi appendix 98

a pseudo-code 99

b figures 103

bibliography 108

L I S T O F F I G U R E S

Figure 1 Overview of all tested sensors 3

Figure 2 Different sensor setups 4

Figure 3 Visualization examples 10

Figure 4 Camera coordinate frame 12

Figure 5 Image coordinate system 13

Figure 6 Extrinsic camera parameters. (XT, YT, ZT) is the
translation vector from the world coordinate sys-
tem to the camera coordinate system. α, β, γ are the
angles for yaw, pitch and roll. 14

Figure 7 Calculation of the re-projection error 15

Figure 8 Calibration patterns 17

Figure 9 Electrical and physical properties of the calibra-
tion board 18

Figure 10 Schematic of the calibration board with one resis-
tor mounted in the center of each checkerboard
square. 19

Figure 11 Real calibration board. 19

Figure 12 Exemplary IR images showing calibration board
and the 7× 5 resistor pattern. 20

Figure 13 Illustration of an exemplary Delaunay triangula-
tion as well as the neighborhood relations. 22

Figure 14 Train coordinate system with origin Pzero 24

Figure 15 Extrinsic calibration by taking several measure-
ments of points in the scene 26

Figure 16 Possible features which we can not rely on 27

Figure 17 Calibration using three lines 28

Figure 18 Different camera calibrations may result in the
same projection of the two rails 29

Figure 19 Projection of a small tunnel based on four inter-
mediate roll parameters of the second calibration
step 30

Figure 20 Visualization of the calibration result in four
different scenes with different cameras and dif-
ferent lenses 31

Figure 21 Boundary of the calibration board projected into
the IR images based on the automatically cali-
brated intrinsic and extrinsic IR camera parame-
ters. 33

Figure 22 Illustration of the (three) steps to find the cal-
ibration board in potentially noisy laser range
measurements. 33

ix

List of Figures x

Figure 23 UIC (International Union of Railways) Loading
Gauges 38

Figure 24 Distinction between obstacle and object space 39

Figure 25 Extreme points of the train outline in curves 40

Figure 26 Calculating the extreme points to estimate the
dynamic outline 41

Figure 27 Calculation of the dynamic gauge 42

Figure 28 Dynamic thresholds based on the dynamic gauge
separate the obstacle space from the object space
42

Figure 29 Comparison between road lanes and railway tracks,
and overview of different scenarios 45

Figure 30 Acquisition of the Inverse Perspective Mapping
(IPM) image 47

Figure 31 Preprocessing steps of the track detector (images
are rotated 90◦ clockwise) 49

Figure 32 Track mask example at three different ages 51

Figure 33 Extraction of valid edge pixels by detecting local
maxima with a sliding window approach 51

Figure 34 Slicing of the preprocessed image and calcula-
tion of the slice thresholds 52

Figure 35 a.) Results of the blob extraction following a b.)
removal of too small contours 53

Figure 36 Fitted line segments to the connected compo-
nents 54

Figure 37 Distance and angle between two segments 54

Figure 38 Part of a clothoid curve of degree 2 56

Figure 39 Segments used for polynomial fitting 58

Figure 40 Calculating the evaluation interval 59

Figure 41 Track centerline must pass through the point
Pzero 60

Figure 42 Local maxima in wrong places 62

Figure 43 Hough map 63

Figure 44 Detector error with polynomial model 65

Figure 45 Detector error in Hough-map detector 66

Figure 46 Problematic trees scene with heavily reduced track
base 67

Figure 47 The sensor simulation interface is a part of the
Blender GUI. It can be used just like any other
feature of Blender. 72

Figure 48 Interaction between BlenSor and Blender 73

Figure 49 Reflectivity model based on surface distance
74

Figure 50 Objects with low reflectivity 75

Figure 51 Distribution of distance corrections from the
Velodyne configuration 75

List of Figures xi

Figure 52 Comparison of distances errors between a real
and simulated scan of a wall 76

Figure 53 Comparison of normal distances from a real and
simulated scan to a wall 76

Figure 54 The pitch and yaw angles of the outgoing rays
are affected by the different yaw angle α of
the mirror as it rotates. The angles of the rays
are unaffected only in the mirror’s initial posi-
tion. 78

Figure 55 Back-folding effect of Time-of-Flight cameras 79

Figure 56 Incomplete depth measurements in stereo setups
due to occlusions 80

Figure 57 Scanning principle of the virtual stereo sensor
81

Figure 58 Totally reflecting surfaces cause points to appear
farther away 83

Figure 59 Example noise types in BlenSor 84

Figure 60 Scan area of a single scan at different simulation
intervals 86

Figure 61 Street scene with 85903 vertices and 164166 faces
87

Figure 62 Simulation of a simple scene with MORSE and
BlenSor using the implemented Velodyne HDL-
64E S2 sensor. 90

Figure 63 Simulation of a scene with a large amount of
vertices. The scene consists of a rough terrain,
simulating an acre, with a near collision of two
cars. The figures in the top row show the sim-
ulated sensor output of BlenSor, the figures in
the bottom row show the rendered scene (i.e. the
camera view) as well as the ground truth (i.e. a
2000× 2000 high-resolution depth map). 91

Figure 64 Simulated Kinect versus real Kinect depth-map
92

Figure 65 FLIR images and corresponding depth maps (cal-
culated using the algorithm of [8]). 96

Figure 66 Depth map comparison of a scene (i.e. park-
ing garage) where the only source of illumina-
tion is emergency light (simulates night condi-
tions). 96

Figure 67 Fitting of a rotated polynomial 104

Figure 68 Sampling of the rotated polynomials within a
region of interest 105

Figure 69 Examples from the Problematic trees scene. The
first image is a visualization of the detected track,
the second image is the IPM image and the last
image is the result of the block based local max-
ima detection without the track mask. 106

Figure 70 Examples from the Winter scene. The first image
is a visualization of the detected track, the sec-
ond image is the IPM image and the last image
is the result of the block based local maxima
detection after applying the track mask. 107

L I S T O F TA B L E S

Table 1 Detection rate and re-projection error of resistors in
IR images with respect to different capture environ-
ments. 35

Table 2 Properties of street lanes and railway tracks 44

Table 3 Velodyne simulation times of a single rotation of
the Street scene with 25 Hz 88

Table 4 Processing time in seconds of different sensors
in a complex scene. 89

L I S T I N G S

A C R O N Y M S

BlenSor Blender Sensor Simulation

DARPA Defense Advanced Research Projects Agency

DoG Difference of Gaussian

FOV Field of View

GPS Global Positioning System

xii

acronyms xiii

GPU Graphics Processing Unit

FPS Frames per Second

IPM Inverse Perspective Mapping

IR Infrared

LCM Lightweight Communications and Marshalling

LED Light-emitting Diode

LIDAR Light Detection and Ranging

PCL Pointclouds Library

PTP Precision Time Protocol

RANSAC Random Sample Consensus

RGB Red Green Blue

ROI Region of Interest

ROS Robot Operating System

SAD Sum of Absolute Differences

SVM Support Vector Machine

ToF Time of Flight

UIC International Union of Railways

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

This work is a part of project autoBAHN [13]. Project autoBAHN eval-
uates whether fully autonomous trains can be operated on smaller
branch lines in Austria. In recent years numerous tracks have been
shut down due to cost saving measures. While there is still demand
for those lines it is not enough to sustain a cost-efficient operation.
The premise of autoBAHN states that increased frequency on those
lines would make them more attractive and thus increase passenger
numbers. However such an increase in frequency would require more
train conductors nullifying the gain in passenger numbers. Project
autoBahn further states that the cost for additional train conductors
could be prevented if the trains were operated autonomously.

While autonomous trains are already operated around the world,
their tracks are usually unaccessible by non-authorized personnel.
Examples of such autonomous trains are the Las Vegas Monorail 1

and the Copenhagen Metro 2. In case of the Las Vegas Monorail the
tracks are completely unaccessible for a passenger since it drives on
an elevated track and all stations are guarded with automatic doors,
which only open when a train is inside the station. In contrast to
such already available autonomous trains the aim of autoBAHN is an
operation on unmodified branch lines in Austria. Such branch lines
usually have no protection against unauthorized access to the tracks
at all. Some “train stations” are even not more than a park-bench and
a traffic sign. Many railroad crossings are secured solely by a traffic
light. Physically preventing unauthorized access to such branch lines
through structural changes is virtually impossible without rebuilding
the whole track.

1.1 vehicle

The test vehicle is a rail-car that includes the passenger section. It
contains 40 seats for passengers and was modified by Siemens and
Elin to be operated automatically while preserving the capability of
manual operation. Communication between the autoBAHN system
and the control module is handled via a CANopen bus. Control com-
mands allowed from the autoBAHN system to the control modul are
setting the target velocity and signaling with the train horn. Ensuring
safe acceleration/deceleration is handled by the control module. Even
if the autoBAHN system would issue potentially dangerous speed

1 http://www.lvmonorail.com/
2 http://intl.m.dk/

2

1.2 sensors 3

Velodyne HDL-64EBumblebee XB3

Ultrasonic obstacle detectors

Wide-baseline stereo

Ibeo LUX

Radar

Figure 1: Overview of all tested sensors

settings for acceleration/deceleration or ignore traffic lights, the con-
trol module would not execute them. Such an additional safety layer
is necessary because the autoBAHN system in its current form has
no connection to the train traffic control system and does therefor not
know whether it is allowed to enter certain track sections. Another
train inside a section may also forbid such a maneuver.

1.2 sensors

Our autonomous train is equipped with numerous sensors (Figure
1) that in some way or another are used to detect objects in the
surrounding environment. Each sensor provides a different view on
the environment – some of them by employing completely different
sensing technologies. Several different sensor technologies were tested
during this project – some of them active sensors and some of them
passive.

Active sensors emit a signal and measure the part of the signal that
is reflected back to the sensor

• Laser range finder, also known as Light Detection and Ranging
(LIDAR) devices.
This type of sensors can be further divided into LIDARs that scan
only very few lines and those which use many layers to do a
partial or full scan of the environment.

• RADAR

• Ultrasound

1.2 sensors 4

(a) Train with wide-baseline stereo-
camera, Radar, Ibeo LUX and Ul-
trasonic obstacle detectors

(b) Train with Velodyne sensor on top

Figure 2: Different sensor setups

Passive sensors may be augmented by active components i.e. additional
light sources. However, their basic scanning principle does not rely on
such augmentation

• Monoscopic cameras
Cameras seem a natural choice as a sensor for autonomous vehi-
cles since they closely resemble how a human driver perceives
the environment. Monoscopic cameras can be further classified
by the frequency spectrum they are able to detect

– Visible light cameras - conventional camera systems designed
for the parts of the light spectrum also visible to the human
observer

– Near infrared cameras - often referred to as Nightvision cam-
eras

– Far infrared cameras - also known as thermal imaging cam-
eras

• Stereoscopic Cameras - even if stereoscopic cameras are merely a
combination of monoscopic cameras, the data processing and
extraction of useful information from those sensors works for
the better part in a completely different way. This justifies the
decision to put them in a sensor class of their own.

Two possible sensor setups are shown in Figure . The setup shown in
Figure 2a contains all sensors except the Velodyne and the Bumblebee
XB3. The sensor setup shown in Figure 2b contains only a Velodyne
and a Radar sensor.

1.2 sensors 5

1.2.1 Velodyne

LIDAR devices are the key sensor technology in today’s autonomous
vehicle systems. Their output is used for obstacle detection, tracking,
surface reconstruction and object segmentation, just to mention a
few. Many algorithms exist which process and analyze the output of
such devices. The Velodyne HDL-64E S2 is a rotation scanner with 64
lasers. The version used in this project can provide up to 15 scans (full
rotations) per seconds. This scanner is used for example in systems
like Junior ([37]), by the Tartan Racing Team ([54]) and the autonomous
car of the Karlsruhe Institute of Technology ([39])

1.2.2 IBEO

The IBEO Lux is a rotating LIDAR scanner with up to four scan layers.
The vertical Field of View (FOV) is 3.2° and the horizontal FOV is either
110°, if only two scanning layers are used, or 85°, if all four scanning
layers are used. The scanner is designed for automotive use. The four
layers with the vertical FOV of 3.2° are meant to compensate the vehicle
pitch during acceleration, deceleration and driving over bumps in the
road.

The output of the IBEO scanner is either a point-cloud or a list of
detected objects. Detected objects are tracked throughout the scans.
The scanner provides and estimated size, position and speed of tracked
objects. The IBEO Lux was used for example in Junior ([37]) the
Stanford entry for the Defense Advanced Research Projects Agency
(DARPA) Urban Challenge and by several other DARPA candidates.
Another example is an experimental semi-automatic valet parking
service [49].

1.2.3 Infrared

The FLIR PathFindIR camera is a thermal imaging sensor with a
resolution of 320× 240 pixel. Although the sensor is able to output
data at 25 Hz the version we are using can only provide 8.3 Hz due to
international export regulations. With a horizontal FOV of 36° and a
vertical FOV of 29° the system is equipped with a wide angle lens.

The sensor is mounted below the middle window of the driver’s
cabin, forward-facing with the principal axis of the camera perpendic-
ular to the front surface of the train.

1.2.4 Monocular cameras

Monocular cameras are a very attractive sensor in autonomous systems
because they are relatively cheap but still very flexible. There are
usually no moving parts and their properties can be tailored to the

1.3 processing platform 6

specific scenario. One can for example choose different lenses, different
color/wavelength filters, sensor resolution, rate of acquisition and
exposure time. This flexibility makes them very attractive for a wide
area of use cases.

In autonomous vehicle systems they are used for example for pedes-
trian detection ([22]) by applying an AdaBoost algorithm to do a
rough estimation of interest regions followed by an Support Vector
Machine (SVM) classifier that decides whether or not the region is a
pedestrian. In visual odometry applications like [58] corresponding
vertical lines are used to estimate the ego-motion of a mobile robot
platform.

But even if monocular cameras are not used for detecting objects or
motion estimation they are also used for visualization and situation
recording. It is very important to see what the system has seen when
one tries to find problems in the algorithms.

We are using several Basler scout scA1300-32gm gray-scale cameras
capable of acquiring 32 frames per second at a resolution of 1296x966

pixels.

1.2.5 Stereo cameras

Even though much work on monocular obstacle detection has al-
ready been done, the distance of an object is inferred only from prior
knowledge like their size or known cues in the scene. Using two or
more cameras in a stereo setup, the distance to objects can be triangu-
lated. To achieve this, corresponding points in both views have to be
detected.

Stereo cameras have all the advantages of monocular cameras while
at the same time enabling them to reliably calculate the distance of
objects in the image. Since cameras are passive sensors, they will not
interfere with each other, no matter how many of them are viewing
the same scene. Even though the fact that this is a passive sensing
technology may be an advantage in some situations (no interference),
it is also the greatest weakness of monocular and stereo cameras. No
matching or detection is possible when objects do not reflect enough
light or when the texture is too weak to calculate reliable matches. In
addition to Basler cameras the system is equipped with a Bumblebee
XB3 stereo camera with a resolution of 1280x960 at 15 fps. The XB3 is
attached to the base of the Velodyne HDL-64E2 and is used mainly
for visualization purposes.

1.3 processing platform

Having many sensors also has a disadvantage – processing costs.
Using a single system to process all sensors inputs may be feasible
on a high-performance machine, but even on such systems there is a

1.3 processing platform 7

point where sensor input can no longer be processed. To allow such a
system to scale beyond the capacities of a single machine, the work
has to be distributed to several systems and only the pre-processed
data should be sent to a central processing system. For example, it
does not make sense to send all the data from a Velodyne scanner
to the sensor fusion unit if the only data that is processed are the
bounding volumes of objects. In such a case it is much more efficient
to process the data on the system where it is acquired and to only
send the bounding volumes to the sensor fusion.

While it would be possible to implement such a system on our own
we are going to use one of the state-of-the-art messaging libraries that
are designed especially for such environments.

We are going to define the main criteria by which the system is
selected

• Fast communications
If the processing units are located on different computers, there
are network transmissions involved which are a limiting factor.
However, it is still imperative that messages are transmitted as
fast as possible. A plus would also be if the messaging system
could exploit the fact that some processing units are located
on the same computers and do not need to communicate over
sockets but could rather communicate over shared memory.

• Recording capabilities
The system should be able to record the messages and play them
back. An additional advantage would be if the time could be
recorded too. Processing units could then work on the data as if
they were running on the actual test vehicle.

• Inspection
Monitoring message bandwidth and verifying what data gets
transmitted is an important task during development and de-
bugging. The messaging system should include tools to assist in
verifying the correct behavior of the system as a whole.

Using these criteria we selected two popular messaging systems. The
Robot Operating System (ROS) by Willow Garage and Lightweight
Communications and Marshalling (LCM)

1.3.1 ROS

One of the most popular messaging systems in robotics is the ROS ([41]).
However, the name is misleading, as ROS is not an actual operating
system, but rather a very big collection of programs and libraries
that provide means of communication and standard utilities for data
processing of point clouds, images, etc. Each process in a ROS system
is called “node”. Nodes can communicate by publishing messages,

1.4 visualization 8

subscribing to messages, providing services and calling services. A
ROS system consists of a master node (roscore) and several nodes that
process or provide data inside the system. Communication between
ROS nodes is done via TCP or UDP and in special cases via shared
memory.

Messages are addressed via so called topics. A topic is a named
message-bus to which the node that created the topic publishes mes-
sages and to which none, one or many nodes can be subscribed. This
decouples the sender from the receiver. A sender does not need to
know how many nodes are subscribed to the topic. Since all commu-
nication is set up via the roscore node, there is a central point that has
a complete view of all nodes that communicate with each other.

Retrieving the local time via ROS functions returns the current time,
if the system is running live. However the huge benefit of using
the ROS functions instead of the native operating system functions
comes during playback. While playing back a recorded scenario, all
nodes receive the same timestamps as during the recording. This
simplifies the debugging process because the sensor data has the
correct timestamps appearing to the processing nodes exactly like
during recording.

ROS is used in our system for all camera related nodes and for the
Visualization described in Section 1.4.

1.3.2 LCM

The LCM framework ([38, 26]) is a library for message passing on
tightly coupled networks. Just like ROS it allows nodes in the system
to communicate in a publisher/subscriber manner and handles the
marshalling and unmarshalling of transmitted data (objects). Com-
pared to ROS, it has the advantage that the whole framework is very
small and has very few external dependencies. The LCM is used in our
system for publishing the object positions and publishing the track
information.

1.4 visualization

Using many different sensors and algorithms creates a certain degree
of complexity and makes tracking down bugs in the whole system
very time consuming. In addition the sensor output may not be very
intuitive, if the output is manually evaluated without the proper
context. For example, the output of a single scan from the IBEO Lux
is a series of (x, y, z) coordinates of points along the 4 scan layers.
Even if they are rendered as a point-cloud, it is hard to distinguish
features. In order to analyze the output of the sensors we developed a
ROS node for overlaying sensor output over the camera image. This

1.4 visualization 9

helps debugging the obstacle detection, track detection and position
estimation systems.

The general idea is to calibrate the camera used for visualization to
the common coordinate system of the train, which will be explained in
Section 3. Once this calibration is known, all objects that are detected
can be projected into the visualization along with information that is
useful for debugging, which is

• A fixed size bounding box around the center of detected objects
from the Ibeo sensor, illustrated in Figures 3a-3d. Since no three
dimensional shape information is provided by the internal object
detector, the objects are assumed to have an upright standing
bounding box of 1× 1 meter with the frontal face orthogonal to
the ray from the sensor to the detected object.

• A variable sized bounding box from the Stereo sensor. It has the
proper width and height of the objects that were detected.

• A two plane approximation of the part of the convex hull that
is visible from the Velodyne, illustrated in Figure 3a. In case of
a cubic obstacle like a building this approximation evolves into
an L-shape (when viewed from the top) in which the planes
are perpendicular. For non-cubic objects it degenerates into a
V-shape. For the purpose of visualization these shapes do not
matter as they are projected into an image plane. However, the
visualizer has to process the same data as the obstacle detection
subsystem.

• The expected track used to verify the correctness of the self-
localization. The projection is show in Figures 3a-3d. The track
information is published either by a subsystem that extracts it
from a known map based on the current train position, or by a
subsystem that detects the track in the camera images in real-
time which will be explained in Chapter 5. This track information
is also used to make the distinction between obstacles and objects
which will be explained in Chapter 4.

The visualizer is subscribed to the camera node through ROS , and
to all nodes that provide object information and to the subsystem
that publishes the track information through LCM. The visualizer itself
broadcasts the augmented images on a dedicated network interface
to prevent interference with the autonomous system. The reason for
this is that it should make virtually no difference whether or not the
visualizer is connected to the autonomous system. Otherwise we could
not argue about the validity of the results, if the substantial amount of
traffic generated by the visualizer delays packets between the sensors
and the obstacle detection system.

1.4 visualization 10

(a) Ibeo obstacles (red boxes with blue base) and a mast (green) de-
tected by the Velodyne sensor

(b) Ibeo obstacles (red boxes with blue base) and a mast (green) de-
tected by the Velodyne sensor

(c) Obstacles detected by the Ibeo sensor (red boxes with blue base)

(d) Obstacle detected by the Velodyne and the Ibeo scanner

Figure 3: Visualization examples

Part II

C A L I B R AT I O N

2
C A M E R A C A L I B R AT I O N

2.1 pinhole camera model

The relationship between points in the world coordinate system and
measurements of those points by the camera (image points) is estab-
lished by modeling the camera with the pinhole camera model. This
widely known concept is often used to model a real world camera
with commonly used optics (lenses). Using the pinhole camera model
means applying a central projection to the points in the camera co-
ordinate system. A point in the camera coordinate system, given as
A = (X, Y, Z)T in Figure 4b, is projected to the point a = (u, v)T onto
the image plane in Figure 4b. The projection is calculated as

(u, v) =
(

f · X
Z

,
f ·Y

Z

)
(2.1)

where f is called the focal length of the camera, A ∈ R3 and a ∈ R2.
The line normal to the image plane passing through the origin of the
camera coordinate system (also known as the camera center) is called
the principal axis shown as the Z-axis in Figure 4a. The intersection
between the principal axis and the image plane is called the principal
point P.

This projection can be formulated as a matrix multiplication by
embedding the points in homogeneous coordinates

Z

X Y

XY plane

XZ plane

camera center

'
origin of camera

coordinate

system

image plane

(a) Camera coordinate frame

Z

X
Y

A

C P

principal point

a

f

(b) Perspective projection

Figure 4: Camera coordinate frame

12

2.1 pinhole camera model 13

u

v

p
(cx, cy)

(0, 0)
a

Figure 5: Image coordinate system

s ·

 u

v

1

 =

 s · u
s · v

s

 = P ·

X

Y

Z

1

 =

 f 0 cx 0

0 f cy 0

0 0 1 0

 ·

X

Y

Z

1

(2.2)

where cx, cy are the image coordinates of the projection of the prin-
cipal point. In real cameras, the origin of the image coordinate sys-
tem and the image of the principal point do not coincide because
u, v are indices into the two-dimensional array of pixels and thus
can not be negative. Therefore, the image of the principal point is
at∼ (width

2 , height
2) shown in Figure 5. As a convention, we will use

an image coordinate system in which the horizontal axis u advances
from left to right and the vertical axis v advances from top to bottom.
This means that the origin of the image coordinate system is in the
upper-left corner (Figure 5).

The 3× 4 matrix P in Equation 2.2 is called a projection matrix. In
this simple case, where the camera center is at the origin of the world
coordinate system and pointing along the Z axis, the 3× 3 sub-matrix
from column one to column three is called intrinsic camera matrix K. If
the camera is in a different place or if the camera is rotated relative to
the world coordinate system the matrix K can not be extracted directly
from P. In this case the projection can be formulated as

s ·

 u

v

1

 = K [R|t] ·

X

Y

Z

1

 = P ·

X

Y

Z

1

 (2.3)

where K =

 f 0 cx

0 f cy

0 0 1

, R is a 3× 3 rotation matrix describing the

rotation of the camera coordinate system to the world coordinate system

2.1 pinhole camera model 14

zw

xw

yw

YT

ZT

XT

α

β

γ x

y

z

u

v

Figure 6: Extrinsic camera parameters. (XT , YT , ZT) is the translation vector
from the world coordinate system to the camera coordinate system.
α, β, γ are the angles for yaw, pitch and roll.

and t = −RT where T is the translational offset of the camera center
from the origin of the world coordinate system.

As we can see there are three coordinate systems that are of interest

1. World coordinate system
Coordinates are relative to a world origin and along the world
axis. This may be a common reference point for all sensors,
the origin of one of the sensor coordinate systems or any other
arbitrarily chosen point that is well known.

2. Camera coordinate system
Coordinates are relative to the camera center. The z-axis or the y-
axis are usually normal to the image plane. The camera coordinate
system relates to the world coordinate system by a rotation and a
translation of the coordinates (Figure 6).

3. Image coordinate system
Coordinates are relative to the origin of the image coordinate
system. This origin is usually the upper-left or lower-left corner
of the image sensor. The image coordinate system relates to the
camera coordinate system by a perspective projection of the point in
the camera coordinate system to the points in the image coordinate
system.

The intrinsic camera parameters K and the extrinsic camera parameters
R, T are all the information needed to project a given point from the
world coordinate system to the image coordinate system.

2.1.1 Re-projection error

During the calibration of a camera sensor one needs to know the
quality of the calibration results. Given the estimated calibration pa-

2.2 calibration 15

p1

p2

p3

p1

p2

p3

Calibration Projection

World coordinates

Image points

Camera
parameters

pi

Pi Pi

Projected points

p′i

p′1

p′3

p′2

d(p3, p
′
3)

d(p1, p
′
1)

d(p2, p
′
2)

u

v

u

v

Figure 7: Calculation of the re-projection error

rameters and the input data, a metric should measure the accuracy of
the parameters. The calibration process uses measured points in the
image and their corresponding world coordinates to calculate the cam-
era parameters. In most cases, where the measurements of the points
are subject to errors, the calibration does not yield an exact result, but
only an estimate. These estimated parameters are then used to (re-)
project the world coordinates into the image coordinate frame (Figure 7).
Due to the measurement errors the projected points won’t overlap
with the measured points exactly. Using the euclidean distance to
measure the error between projected points and real points leads to the
re-projection error. It is the sum of squared euclidean distances between
the real points and the projected points (Equation 2.4).

∑
i

d2(pi, p′i) (2.4)

This re-projection error depends on the number of points used, which
would cause problems when different calibration scenarios are com-
pared. For this reason we will use the average re-projection error in
this work to compare the results. The average re-projection error is the
arithmetic mean (Equation 2.5) of all Euclidean distances of pi and p′i

1
N ∑

i
d2(pi, p′i) (2.5)

where N denotes the number of points.

2.2 calibration

To calibrate the camera parameters, we are using the methods de-
scribed in [24]. The basic idea is to find enough points in the image for
which the world coordinates are known to set up a system of linear
equations which is then solved to determine the projection matrix P
(Equation 2.3). The projection matrix we are using has 11 degrees of
freedom ([24]) which requires 6 point correspondences since every
point creates two equations. However, this would only be true if all
point correspondences were without error. This is not the case in real
world calibration scenarios. To create a robust calibration, the num-

2.2 calibration 16

ber of point correspondences should be much higher. The resulting
system of linear equations is then solved in a least squares manner
and provides results that have a certain degree of robustness against
measurement errors.

The general approach towards intrinsic and extrinsic camera pa-
rameter estimation of any visible-light camera is to use some sort
of calibration pattern with known dimensions to establish object to
pixel correspondences [24]. Usually, this is accomplished by using a
black/white checkerboard pattern mounted on a planar calibration
board. The pattern is recorded by the camera at varying positions.
Detecting the corners of each of the squares provides the required
world to image correspondeces that are used to estimate the intrinsic
parameters as well as the geometric distortion introduced by the lens.
Given the intrinsic parameters are already available, it is possible to
determine the extrinsic parameters, that describe the position and
orientation of the camera reference frame with respect to a known
world coordinate frame.

Detecting a calibration board in front of a fixed camera is technically
the same as moving a camera in front of a fixed calibration board. To
establish a useful relationship between the different positions and the
calibration board, the algorithm must be able to detect the same points
on the calibration board for which the world-coordinates are known.

2.2.1 Checkerboard pattern

The whole calibration process relies on a robust detection of the cal-
ibration board ([45, 42]). The most common calibration pattern is a
checkerboard (Figure 8a). In this pattern the corners between white
and black fields are detected. Every corner is assigned a world coor-
dinate corresponding to the position within the pattern. This is very
simple since one only needs to count the horizontal and vertical cor-
ners and assign each corner those two numbers as x and y coordinates.
The z coordinate is the same for all points because the calibration
board is a planar object. Without loss of generality, the z coordinate is
set to zero.

An example for a world coordinate in the “checkerboard coordinate
system” is (Xc, Yc, 0). These coordinates are further scaled according
to the real size of the checkerboard fields, cw (width) and ch (height) X

Y

Z

 =

 cw · Xc

ch ·Yc

0

 (2.6)

which yields the final world coordinates of the checkerboard corners
(X, Y, Z). The algorithm now has a correspondence between image
coordinates and world coordinates, which is required to calculate the

2.2 calibration 17

Origin (0, 0)

(6, 1)

(2, 3)

Calibration board

cw

ch

(a) Checkerboard

Origin (0, 0)

(9, 1)

(2, 4)

Calibration board

cw

ch

(b) Circle-pattern

Figure 8: Calibration patterns

projection matrices ([45]) and from that the intrinsic and extrinsic cam-
era parameters.

Another widely used pattern for camera calibration is a grid of
circles as shown in Figure 8b. The calibration algorithm works just
like when a checkerboard pattern is used. The centers of the circles
are placed on a well known grid which can be converted to world
coordinates. Once the circles are detected, their centers are converted to
preliminary world coordinates, which are then converted to real world
coordinates by scaling them according to the spacing between the
circle centers (Equation. 2.6).

2.2.2 Far-infrared camera calibration

Calibrating a far-infrared camera is a bit more involving than calibrating
a visible light camera for which we chose a black/white checkerboard
pattern mounted on a planar (metal) surface as a basis for calibration.
This enables an easy estimation of the intrinsic parameters of the
visible-light camera by using the method of Zhang [59]. However, the
far-infrared camera is unable to detect the black/white checkerboard. In
order to use the same approach to determine the intrinsic Infrared (IR)
camera parameters, the calibration board has to be augmented with a
pattern visible to the IR camera.

Our approach to tackle this problem is to install a pattern of electri-
cal elements emitting IR radiation. Using Light-emitting Diode (LED)s
to create a detectable pattern in the visible and IR spectrum does not
work because the thermal difference to the calibration board is too
low, even though LEDs have an efficiency level of ≈ 20 percent, leaving
enough energy for thermal radiation. As an alternative strategy, we
decided to use a set of resistors mounted in the centroid of each square
(see Figure 9a, 9c and 10). This has the advantage that the geometric
corners of the black/white squares are not physically distorted by the
resistors. Consequently, the corner points in the image of the visible-
light camera can still be automatically detected (using the algorithm

2.2 calibration 18

Infrared Radiation

Hot Glue

Checkerboard

(a) Resistor mounting

R1

R1-R35 = 330 ohm

U1 = 12 volt

R2

R4

R5

R3

R6

R7

R9

R10

R8

R11

R12

R14

R15

R13

R16

R17

R19

R20

R18

R21

R22

R24

R25

R23

R26

R27

R29

R30

R28

R31

R32

R34

R35

R33

(b) Circuit diagram

(c) Resistor mounting on the real
board

(d) Wiring of the board

Figure 9: Electrical and physical properties of the calibration board

of Vezhnevets, implemented in the OpenCV library [3]). Calibration is
not negatively affected.

Regarding the physical configuration of the calibration board, we
install an evenly spaced array of 35 (7× 5) resistors connected to a 12
volt DC power supply (Figure 11). Each resistor is a 330 Ohm metal
film resistor. The circuit diagram (see Figure 9b and the corresponding
wiring in Figure 9d) shows that there are seven rows attached in
parallel to the power supply. Each row consists of 5 resistors connected
serially. After adding all wires, the whole circuit draws ≈ 1.12 ampere
and thus emits ≈ 13.44 watts of thermal radiation.

By looking at the two exemplary IR images showing the calibration
board in Figure 12a, one may notice that simple gray-value thresh-
olding to detect the resistors will not work reliably for the following
reason: the person holding the calibration board emits much more IR

radiation than the resistors which eventually leads to a broader range
of intensity values. This makes it impossible to detect the resistor spots
by means of gray-value thresholding alone. One could argue that this
problem could be solved by using a mounting bracket. However, such
a solution is usually constrained to a laboratory environment.

The basic idea of our approach is to exploit the regularity in the
spacing of the resistors (in both directions) to reliably detect the pat-
tern. The algorithm consists of two steps which are executed iteratively
and one finalization step in which the most suitable result is picked
and the remaining resistors are identified. In one iteration step, a
gray-value thresholding is performed to identify resistor candidates

2.2 calibration 19

Checkerboard Pattern
detectable by visible-light camera

Metal Film Resistors
detectable by infrared (IR) camera

C
a
li
b
r
a
t
io
n

B
o
a
r
d

d
e
te
c
ta
b
le

b
y
th
e
la
s
e
r
s
c
a
n
n
e
r

Figure 10: Schematic of the calibration board with one resistor mounted in
the center of each checkerboard square.

Figure 11: Real calibration board.

2.2 calibration 20

(a) IR images with calibration board

(b) Detected resistors (black crosses)

Figure 12: Exemplary IR images showing calibration board and the 7× 5
resistor pattern.

and the regularity of the candidate resistor pattern, which most likely
corresponds to the true resistors, is measured.

Candidate search
In one iteration step, gray-value thresholding with a threshold

chosen from a predefined range, is performed. Since the intensity
in IR images can differ significantly depending on the environment,
the idea is to increase the gray-value threshold t ∈ [0, 1] in each
iteration in order to find a setting where the resistors can at least
be segmented from the metal calibration board. In that case, a high
regularity in the identified candidate resistors is expected, which
will be measured in the second step. The range of thresholds R :=
[a, b], a := tO − ε, b := tO + ε is determined by Otsu’s [40] intensity
threshold tO and a heuristically determined value ε 1. After the IR

image is binarized, all connected regions with an area larger than 50
pixels are removed and the region centroids are calculated. Since the
calibration board has to be positioned at least six feet away from the
sensor, any region larger than 50 pixel is most likely not a resistor.
The centroids, denoted by the vertices Vi ∈ R2 represent the resistor
candidates and are the input to the next step.

1 a value of ε = 0.25 has shown to work well in practice

2.2 calibration 21

Measuring Regularity
In the second step of one iteration, the Delaunay triangulation T of

the set of vertices Vi is computed. The Delaunay triangulation has the
property that the minimum interior angle among all triangles is the
greatest possible among all triangulations. Figure 13a shows the part
of the Delaunay triangulation which contains the x× y resistor pattern
(illustrated as black dots). Let us consider the 2(x− 1)(y− 1) triangles
which triangulate this pattern. A triangle is a neighbor of another
triangle if they share a coincident edge. It can be observed that the
L = 2(x− 3) · (x− 3) inner triangles (shaded gray) share a common
property: all three immediate neighbors of each of the L triangles as
well as their immediate neighbors and the center triangle itself have
approximately the same perimeter (Figure 13b). We explicitly focus
on the L inner triangles, since considering all 2(x− 1)(y− 1) triangles
would not allow to establish a rigorous neighborhood criterion. In case
of the border triangles of the resistor pattern for instance, the criterion
does not hold. Obviously, the inner triangles share other properties as
well, but the perimeter led to the most robust detection results in the
experiments.

The computational steps to identify the L inner triangles can be
summarized as follows: For each of the triangles ∆j in the triangula-
tion T, compute the maximum perimeter difference to all of its nine
neighbors. Formally, given that p(∆j) denotes the perimeter of triangle
∆j and ∆jn, n = 1, . . . , 9 denote the nine neighbors, calculate

mj = max
n=1,...,9

{|p(∆j)− p(∆jn)|}. (2.7)

In case a triangle has less than nine neighbors the maximum perimeter
difference is set to infinity. Next, the variance σ2 of the L smallest
values of m1, . . . , mM, is determined, where M denotes the total num-
ber of triangles in the triangulation T. This variance is a measure of
regularity among the triangles with the smallest maximum perimeter
difference to its nine neighbors. Let this set of L triangles be denoted
as {∆1, . . . , ∆L}. Now, given that v(∆j) returns the set of vertices that
span ∆j, we can require that the cardinality of the set

S =
L⋃

j=1

v(∆j) (2.8)

is (x− 2)(y− 2). Otherwise, the detection result cannot be valid, since
ther are only (x− 2)(y− 2) resistors in the pattern.

Resistor Identification
Depending on the threshold step-size s, d(b− a)/se iterations of the

candidate search and regularity measurement step are performed. Letting
the subscript i denote the iteration index, the configuration (ti, Si)

where the variance σ2
i is minimal will eventually be picked. The final

steps to identify the remaining K := xy− (x− 2)(y− 2) resistors are

2.2 calibration 22

Resistor

Edge Triangle

(a) Illustration of the inner L triangles (light
gray)

Reachable (by one step)

Reachable (by two steps)

(b) Neighborhood and reachability from a
center triangle (dark gray)

Figure 13: Illustration of an exemplary Delaunay triangulation as well as the
neighborhood relations.

straightforward. The boundary vertices of the (x− 2)(y− 2) identified
vertices are picked and all triangles attached to these vertices are
determined. The union of the triangle vertices then gives at least K− 4
of the K remaining resistors. Depending on the triangulation T, we
might however miss the four corner vertices. This can happen because
the triangles containing a corner vertex might not be attached to any of
the (x− 2)(y− 2) vertices found by means of the regularity criterion.
One of these triangles is illustrated in Figure 13a. The final four
resistors are found by performing a nearest neighbor search around
the intersection points of the edges determined by the outermost
vertices. Figure 12b shows two exemplary detection results.

Considering the fact that there is a boundary of metal around the
resistors, the next resistor candidate outside the x× y pattern does not
affect the robustness of this approach. However potential disturbances
can occur in case one threshold setting cannot identify all resistor
centroids. This is obviously possible due to thermal differences of the
resistors which can show up as considerable intensity variations.

3
S E N S O R T O V E H I C L E C A L I B R AT I O N

Our autonomous vehicle is equipped with several sensors of different
categories (camera, laser, ...). When they are mounted to the train,
the relation between their sensor coordinate system becomes fixed,
disregarding minimal changes due to vibrations. As explained in
Chapter 2, the orientation and translation of the camera coordinate
system is described by the extrinsic camera parameters (Figure 6). The
same is true for all other types of sensors, although we will call them
just extrinsic parameters for non-camera sensors.

Knowing the extrinsic parameters between two sensor coordinate
systems enables us to relate their sensor measurements to each other,
also called sensor fusion. This is necessary to

• accommodate sensor noise
All measurements are subject to noise. Combining measurements
from different sensors allows us to improve the accuracy of the
measurements.

• complement measurements between sensors
The measurements of a single sensor are confined to a certain re-
gion. For example, a front-facing radar can only detect objects of
a certain material in a certain field of view in front of the vehicle.
If the field of view or the types of objects that are detectable in
front of the vehicle need to be expanded additional sensors have
to be added.

• manage false positives
There is always a chance that a sensor provides a measurement
for an object that is not really there. One example is electromag-
netic interference that can lead to spurious measurements from
the Velodyne scanner. To filter such false positives, it is necessary
to have several sensors with overlapping regions, as it is very
unlikely that several sensors are affected in exactly the same way
by the effect that created the spurious measurement.

However, pairwise calibration of each sensor pair that needs to share
information is however not necessary. Instead, every sensor coordinate
system will be calibrated to a common vehicle coordinate system. This
should be a point that can be easily accessed when measuring the
distances to the origins of the sensor coordinate systems. It is also
useful if the origin of the vehicle coordinate system has properties that
can later be used. For example, a useful origin of the train coordinate
system is directly above the pivot point of the frontal axle Pzero (Figure
14). This point has the following properties

23

sensor to vehicle calibration 24

Region of interest R
O

I
w

i
d
t
h

ROIheight

R
O

I
le

f
t

ROInear

ZZZ

X

Pzero Camera

Center-line

Figure 14: Train coordinate system with origin Pzero

• It moves along the center-line of the track. This means that Pzero

has the same normal-distance to both rails.

• Even if the swinging of the train can not be neglected, Pzero is
the point on the train that is least affected by it.

• In our case the frontal axle can be reached through an access
hatch from within the train. This hatch is directly above the
pivot point of the axle and thus the position of Pzero can easily
be determined from within the train.

Another example for the origin of the train coordinate system would be
the location of the Global Positioning System (GPS) antenna. However,
if the GPS antenna is not mounted permanently on the vehicle, or if
the antenna is kept in place only by magnets, the choice of the origin
should be a different point on the vehicle.

Once a good origin is selected, the extrinsic calibration of the sensors
can be performed. This is done in one of three ways

• Some sensors may be calibrated manually, for example by mea-
suring the offset of the GPS antenna to the origin of the train
coordinate system.

• Most sensors are calibrated coarsely by gauging the extrinsic
parameters, then sensing a well known object and manually mod-
ifying the extrinsic parameters to fit that measurement. This
is the easiest way to do extrinsic calibration for sensors where
no automatic or semi-automatic method is available. However
experience shows that these results are almost always inferior
calibration parameters than would be possible with automatic
or semi-automatic calibration. This is simply due to the fact that
automatic calibration may run hundreds or thousands of update
steps until the calibration is sufficiently accurate.

• The camera sensors are calibrated in a semi-automatic way. We
will use two different methods for extrinsic camera calibration.
One method requires the placement of markers in the scene,
which are measured relative to the origin of the train coordinate
system (subsequently called train origin), and another method is
to rely on special properties of the railroad scene.

3.1 camera to vehicle calibration 25

3.1 camera to vehicle calibration

The whole calibration process should be as simple and streamlined
as possible, especially when we are working on a test system that
requires the sensors to be mounted on the vehicle every time a test-
drive is scheduled. The whole calibration process can be split into
two independent stages, just like the camera calibration parameters
consists of two parts (extrinsic and intrinsic parameters). The intrinsic
calibration (Section 2.2) is generally the more tedious task since one
needs to get close to the camera or use impractically big calibration
boards. Fortunately this step needs to be done only when something
directly related to the camera is changed (e.g., different camera sensor,
focal length). Normally this is not the case. Thus the intrinsic parameters
can be calibrated while the camera is not mounted on the vehicle. For
example, the calibration can be performed in the office and remains
valid even if the extrinsic parameters change.

3.1.1 Extrinsic calibration through point correspondences

The most generic method to calibrate extrinsic camera parameters is to
find correspondences between known world points and image points.
Normally, this is done by acquiring images of a three-dimensional
calibration object (cube). In a static scene, this can be simplified by
measuring the X, Y, Z distances of several points in the scene relative
to the train coordinate system. It does not matter if those measurements
can not be made at the same time, but over the course of several
frames, since neither the points nor the camera are moving.

This process requires several steps to acquire the 3D train coordinates
of the calibration points and also requires manual extraction of the 2D
image coordinates of those points. A few things can be simplified in our
train scenario, if the calibration is done in the train station. The two
rails are perfectly parallel and also parallel to the Z axis of the train
coordinate system, with a rail width of exactly one meter. Furthermore
we assign the top of the rails a Y coordinate of zero. The origin of
the train coordinate system is the pivot point of the frontal axle and
located perfectly between the two rails. The calibration process is as
follows

1. Measure the normal distance of the center of the train coordinate
system to the front end of the train

2. Select an arbitrary point on one rail and measure the distance
(along the rail) from this point to the front end of the train. This
can be easily achieved with a laser range meter. In addition with
the offset of the front of the train from Step 1 this distance is the
Z coordinate of the point in train coordinates

3.1 camera to vehicle calibration 26

Measurement three
Measurement two

Measurement one

p1

p2

p3

p4

p6

p7

p8

p5p9

p10

u

v

y

x

z

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Figure 15: Extrinsic calibration by taking several measurements of points in
the scene

3. The X coordinate of all points on the left rail is −0.5 and the X
coordinate of all points on the right rail is 0.5, because the origin
lies exactly between the two rails

4. The Y coordinate of all points on the rails is, as by our convention,
0.0

5. Continue with Step 2, until enough points (∼ 10− 20) on both
rails are known

6. Select the image coordinates of the measured points from the
recorded frames. This is greatly simplified by placing some kind
of marker on the rails for the currently measured points

The result is a list of pairs of image coordinates and train coordinates.
Those correspondences are the input to the calibration algorithm in
[3].

3.1.2 Extrinsic calibration through parallel lines

The calibration method described in Section 3.1.1 is a generic solution
and can easily be modified to fit other scenarios. The disadvantage
is the complexity of the calibration process. Since our tests are done
during normal operation on the railroad, keeping the time it takes
to setup the system at a minimum is a crucial requirement. The
sensor systems must be up and running in a short period of time and

3.1 camera to vehicle calibration 27

A

B

C

Figure 16: Possible features which we can not rely on

the calibration has to be done on the vehicle. Numerous calibration
mechanisms exist that exploit simple constraints in the projections. For
example, calibration based on vanishing points [21, 1], several coplanar
lines [48] or coplanar circles [5]. However those calibration methods
do not apply to our scenario, because the scene does not contain
coplanar circles. Although we have a very prominent vanishing point
(the intersection of the two rails), we are missing a second vanishing
point that can be reliably extracted from the image. For a robust
calibration, the algorithm would need two vanishing points that are
extracted from structures in the scene that are orthogonal to each other.
If we use the rails as the first pair of parallel lines, we would need
to extract two other pairs of lines from region A in Figure 16. It is
clearly visible that this can not be done in a reliable way, because the
resolution of the camera is not sufficient. But even if it was possible
to extract those points the vanishing point would be a bad candidate
for calibration. The lines between the rails are almost parallel to the
image plane. This results in a vanishing point (intersection of the lines)
that is numerically very unstable (approaching infinity). We can see
from region B in Figure 16 that there may not even be lines at all, if
the vehicle is in a region where the track is embedded in concrete.

A remaining candidate for our scenario is the calibration based
on four coplanar lines. Region C in Figure 16 shows that such lines
would in fact be available. However, this depends heavily on the
position of the train in the station and would not work in other stations
along the track, because there is often no second track. Furthermore,
if the camera calibration is done from recorded data, the distance
of those tracks is not known without going back to the scene and
taking the measurements. And those tracks may not be visible at all,
because another train is blocking the line of sight. Since an important

3.1 camera to vehicle calibration 28

pv

p′v

L3

L′
3

L′
2(R, t)L′

1(R, t)

Horizon

L1 L2

δ1 δ2

δ3

Figure 17: Calibration using three lines

requirement is not to interfere with normal traffic, it is not possible to
freely move any train to our needs.

Therefor we need to design our own calibration technique that is
specifically tailored to this scenario. Some things about the scene in
the train station are known and will not change even over time.

• The distance of the rails is one meter.

• The rails are perfectly parallel and extending along the Z axis, if
the train is standing in the train station

• The electricity-poles are standing orthogonal to the plane formed
by the two rails. This is only true if the ground plane has zero
ascending slope.

• The top of the rails has per definition a Y coordinate of zero

The operator calibrating the cameras has to select six points in the
image, namely two points on each, the left and right rail, and two
points on an electricity-pole or other vertical structure to the left of
the tracks.

Using this information, we are able to define a simpler calibration
method based on an error metric that compares the vanishing points
p1, p′1 and the angles of the two rails L1, L2 with two projected rails
L′1, L′2. The projected rails have a distance of one meter and are parallel
to the Z axis with an X coordinate of 0.5m and −0.5m respectively.

argmax
R,t

102 · ((L1∠L′1(R, t))2 + (L2∠L′2(R, t))2)+

d2(In(L1, L2), In(L′1(R, t), L′2(R, t))
(3.1)

where L′1(R, t), L′2(R, t) are the projections of the left and right rail
into the image coordinate system using Equation 2.2, R is the estimated
3× 3 rotation matrix and t is the estimated three dimensional translation
vector. In(L1L2) ∈ R2 is the intersection of the two lines L1 and L2 ,
which are the image of the left and right rail and In(L′1(R, t), L′2(R, t)
is the intersection of the projection of the left and right rail, using the
estimated calibration parameters (R, t).

3.1 camera to vehicle calibration 29

x

y

z

Camera One

Camera Two

Camera Three

(a) Different camera parameters which
produce the same image of the rails

Camera Two

(b) Image of the first camera

Camera Three

(c) Image of the second camera

Camera Three

(d) Image of the third camera

Figure 18: Different camera calibrations may result in the same projection of
the two rails

This does not necessarily lead to usable calibration parameters
because there is an infinite number of calibrations that minimize this
error function. Three different camera parameters that produce exactly
the same projection (Figures 18b-18d) of the rails are shown in Figure
18a.

In a second step the algorithm tries to determine the correct roll
parameter, which in our case is a rotation around the Z axis of the
camera coordinate system. Based on the previous parameter estimation,
a range of roll parameters is evaluated by minimizing an error function
w.r.t the fixed roll parameter.

102 · ((L1∠L′1(Rroll , t))2+

argmax
Rroll ,t

(L2∠L′2(Rroll , t))2 + (L3∠L′3(Rroll , t))2)+

d2(In(L1, L2), In(L′1(Rroll , t), L′2(Rroll , t))

(3.2)

The line L3 is a vertical pole or mast in the image that must be
located to the left of the tracks. Rroll is a rotation matrix with a fixed
roll parameter. The algorithm first evaluates 40 coarse steps around the
roll parameter calculated in step one in a range [−1, 1] radians which
is shown in a few selected images in Figure 19. The best roll parameter
is selected and 40 finer steps in the range [−0.05, 0.05] around this roll
parameter are evaluated. In the last refinement the best roll parameter

3.1 camera to vehicle calibration 30

(a) (b)

(c) (d)

Figure 19: Projection of a small tunnel based on four intermediate roll pa-
rameters of the second calibration step

in the range [−0.0025, 0.0025] around the previous one is selected as
the final result.

The results of the calibration process is shown in Figure 20, which
is a projection of a tunnel into the image, that is supposed to be as
wide as the tracks and standing vertical to the ground plane. Figure
20a shows the calibration of a Basler scout scA1300-32gm mounted in
the left part of driver’s cab. Figures 20b and 20d are also from a Basler
scout but mounted on the right side of the driver’s cab, and Figure
20d also shows that the calibration works on a sufficiently straight
part of the regular track. For Figure 20d, the railroad sign to the left of
the track was used as the vertical structure. Finally, Figure 20c shows
the calibration of a Bumblebee XB3 mounted on top of the train.

3.1.3 Joint LIDAR and camera calibration

Calibrating multiple sensors to each other, requires that we use a
calibration pattern visible to all sensors. In our setup, we thus need a
pattern visible to a 3D laser range scanner, a forward-looking IR (FLIR)
camera and a visible-light camera. Due to the extensive existing work
[59, 52, 46, 14] on the calibration of visible-light cameras, our strategy
is to keep the black/white checkerboard pattern mounted on a planar

3.1 camera to vehicle calibration 31

(a) (b)

(c) (d)

Figure 20: Visualization of the calibration result in four different scenes with
different cameras and different lenses

surface and to augment it by a set of low-cost electrical components
to facilitate IR camera calibration.

The goal is to provide an easy to use calibration mechanism that
can be used in the field by minimizing the constraints on the scenery.
It is required that on-site changes to the test vehicle can be dealt with
immediately rather than calibrating the system in the office.

3.1.3.1 Lens Distortion

To calculate accurate and robust radial (and tangential) distortion
parameters, we would have to have calibration points throughout the
whole image (especially points close to the image borders). This could
either be achieved by moving the board close to the camera or by using
a large calibration board. Unfortunately, moving the board close to the
camera leads to unusable laser returns since a 3D range scanner often
only provides reliable range measurements for objects at a distance
of at least six feet (see Section 3.1.4). Consequently, it would not be
possible to use the same set of calibration images for intrinsic and
extrinsic calibration. We would inevitably need two separate sets; one
which is solely used for the calibration of intrinsic camera parameters
and one which is used for the calibration of extrinsic camera parameters.

3.1 camera to vehicle calibration 32

Using a large calibration board as a potential solution to this prob-
lem is quite impractical, though, especially in outdoor environments
and in situations where the sensor equipment is not permanently
mounted on the vehicle and requires frequent recalibration.

In our setup, visual assessment of the camera distortion has shown
that there is hardly any distortion in the area of interest, which is at
least six feet in front of each camera and is relatively narrow as well.
For that reason, we decided to omit estimation of the lens distortion,
however, we emphasize that this step might have to be incorporated
depending on the cameras. In that case, we favor the solution of using
two separate image sets due to the lower practical impairment.

3.1.3.2 The 3-D Laser Range Scanner

To establish a correspondence between the measurements of the 3-D
laser range scanner and both camera systems, we need to automatically
detect the 3-D coordinates of the calibration board corners. This is a
non-trivial task due to the inherent noise in the range measurements
[15]. The problem can be split into two parts: Firstly, we have to identify
the point cluster corresponding to the range measurements returned
from the calibration board. Secondly, we have to fit a rectangle with
the dimensions of the calibration board to the identified point cluster.

Point Cluster Identification
In order to reliably identify the 3-D point cluster corresponding to

the range measurements from the calibration board, we physically
simplify the task by using a metal stick to hold the calibration board
(fixed by means of a vacuum cup). This allows simple distance thresh-
olding to separate the range measurements off the board from range
measurements off the person holding the board. Otherwise, it would
be significantly harder to automatically separate the point cluster of
interest. We further note that the position where we can present the
board to the laser scanner is constrained by the smallest field of view
angle of one of the cameras, in both vertical and horizontal direction.
Given that we know the length of the stick, these constraints allow
for the automatic identification of the point cluster. An exemplary
segmentation result is shown in Figure 22b, where the point cluster
corresponding to the calibration board is shown in red.

Detecting the Corners
Regarding the second part of our problem, the identification of

the corner coordinates, we have to cope with the aforementioned
sensor noise and the fact that the board might be tilted as well. Since
we want to allow outdoor calibration, we need a strategy that can
handle possibly occurring outliers caused by reflections as well. In
order to cope with these impairments, we rely on the well-known
Random Sample Consensus (RANSAC) algorithm [11] to fit a plane
to the point cluster. The points are then projected onto the fitted
plane along the viewing direction of the laser scanner. Next, we rotate

3.1 camera to vehicle calibration 33

Figure 21: Boundary of the calibration board projected into the IR images
based on the automatically calibrated intrinsic and extrinsic IR
camera parameters.

Laser Return

Projected Laser Return

Corner Candidate

RANSAC fitted plane

Laser

x

y

z

x-y Plane

Minimum Bounding Rectangle

Corner
y

x

Calibration Board Corner (Result)

Detected Calibration Board

x

y

z

(a) The three steps

-50
0

50
100

150

200250300350400450
-100

-80

-60

-40

-20

0

20

40

Mounting Plate

Person

Viewing Direction of Laser

(b) Detection/fitting result

Figure 22: Illustration of the (three) steps to find the calibration board in
potentially noisy laser range measurements.

the projected points to the x-y plane and determine the minimum
bounding rectangle (i.e. the bounding box of the convex hull of the
points). Rotating the corner points of the bounding rectangle back
to our original coordinate system yields the 3-D coordinates of the
calibration board’s corners. All three steps are illustrated in Figure
22a.

We emphasize that we can exploit our knowledge about the di-
mensions of the calibration board in the corner detection step of our
algorithm to validate the quality of the plane fit. Allowing only a
certain deviation from the true rectangle area1 immediately excludes
cases where the RANSAC algorithm followed by the projection and
rotation step led to a wrong minimum bounding rectangle. In Figure
22b, we show an exemplary result of fitting the calibration board to the
laser range measurements. The data shown in this figure corresponds
to the rightmost IR image in Figure 21. Due to a missing ground truth,
we have to rely on visual validation of the result.

3.1.3.3 Extrinsic Calibration

For each calibration image, we estimate the extrinsic parameters of
the cameras relative to the calibration pattern (Section 3.1.3). The

1 in our experiments, we allow a deviation of 3.9 square inches

3.1 camera to vehicle calibration 34

distance from the calibration points to the corners of the calibration
board is known. This allows calculating the image coordinates of the
corners of the calibration board by projecting the four points into
the image, illustrated in Figure 21, using the previously calculated
extrinsic parameters. Consequently, we have knowledge about the
2-D image coordinates and the 3-D coordinates of the corners of
the calibration board in all images. The extrinsic camera parameters
relative to the laser are then estimated by minimizing the re-projection
error (using the OpenCV library). The position and rotation of the
cameras relative to the laser coordinates is fixed. This means that
we can use the 2D-to-3D point correspondences of every calibration
image together, as if we would be using a much bigger and much
more complex calibration object. This helps making the calibration
process robust against sensor noise (mainly introduced by the laser
scanner).

3.1.4 Experiments

The objective of the first part of the experiments (i.e. Section 3.1.4.1) is
to evaluate the quality of the IR calibration method against state-of-the-
art calibration methods for visible-light cameras. Those experiments
are conducted in daylight, as otherwise the visible-light cameras would
fail to provide any useful data. The second part of the experiments (i.e.
Section 7.2), provides a visual comparison of depth map estimation at
conditions similar to driving-by-night scenarios.

Our multi-sensor platform consists of a (visible-light) Bumblebee
XB3 camera (15 FPS at a resolution of 1280× 960 pixel), a PathfindIR
IR camera (8 Frames per Second (FPS) at a resolution of 360× 288
pixel) and Velodyne HDL-64E S2 3-D laser range scanner (operating
at 10Hz). The dimensions of our calibration board are 20′′ × 10′′. Im-
age and laser scan acquisition are performed using three equivalent
standard PCs, synchronized by a software implementation2 of the
IEEE 1584 Precision Time Protocol (PTP). Since calibration is done
using static scenes, accurate time synchronization guarantees that the
sensors observe the same pose of the calibration board. Obviously,
this is an essential requirement for sensor to sensor calibration. For
the Bumblebee calibration we rely on the automatic checkerboard cor-
ner detection and calibration algorithm implemented in the OpenCV
library [3], but any other calibration tool could be used as well.

3.1.4.1 Camera Calibration

First, we evaluate the robustness of the IR resistor detection approach
on a number of IR images captured under varying environmental
conditions and different views. The first test set consists of 15 images

2 http://ptpd.sourceforge.net/

http://ptpd.sourceforge.net/

3.1 camera to vehicle calibration 35

Environment IR (our algorithm) Visible Light Visible Light

Full (OpenCV) Small (OpenCV)

Detection Error [%] Detection Error [%] Detection Error [%]

Outdoor 15/20 0.2677 20/20 0.0893 12/20 0.0822

Office 15/15 0.3007 23/23 0.2084 15/23 0.1534

Table 1: Detection rate and re-projection error of resistors in IR images with
respect to different capture environments.

captured indoors (i.e. office) with an environmental temperature of
≈ 72◦F. The second test set consists of 20 images captured outdoors
with an environmental temperature of ≈ 50◦F. Table 1 lists the fraction
of all images where the resistors are successfully detected. The table
further lists the re-projection error using the automatically calibrated
intrinsic and extrinsic parameters. We compare the re-projection error to
the automatic checkerboard corner detection and calibration algorithm
implemented in the OpenCV library. The Bumblebee XB3 images are
selected to show the same outdoor scene and calibration board pose
we used to estimate the IR camera parameters. In order to obtain a fair
comparison, we have to crop 40 pixels of the left and right part of each
Bumblebee XB3 image (to obtain the same aspect ratio as the IR camera
images) and scale the resulting image down to 360× 288 pixel. For
comparison, the checkerboard is detected two times in every picture:
The first time, we detect the checkerboard in the full resolution image
(i.e. 1280× 960 pixel) and downscale the points afterwards. The second
time, we first downscale the images and then detect the checkerboard
in the low resolution image. The detection in the full resolution image
represents our ground truth and the detection in the downscaled
version of the images represents the scenario which is comparable to
the resistor detection in the IR images.

With the OpenCV checkerboard detector, the calibration points are
found in every image of the Outdoor and the Office scene using the
full resolution Bumblebee XB3 images (see Table 1). Detection in the
downscaled images, however, is only possible in ≈ 60 percent of
all cases. The proposed IR resistor detection achieves considerably
better detection rates, ranging between 75 and 100 percent. We further
observe that the re-projection error of the IR calibration approach is
slightly higher than the re-projection error of the OpenCV calibration
result on the Bumblebee XB3 images (≈ 0.3 pixel), but well below
one pixel. The re-projection error obtained in the office environment
is higher for all three tests because the camera distortion has more
impact on objects closer to the camera (and thus close to the image
borders). These results clearly demonstrate that the detection of the
resistors and the calibration of the IR camera provides comparable

3.1 camera to vehicle calibration 36

results to the calibration of a visible-light camera using a checkerboard
pattern.

Part III

T R A C K D E T E C T I O N

4
O B S TA C L E S

Objects are detected by dedicated sensor systems like a Velodyne
HDL-64E S2 or a Stereovision system, but objects can be anything
(trees, buildings, cars, ...). Obstacles are objects that interfere with the
path of the moving train. If the train was moving on a track that is a
simple straight line, a rectangular region of interest in train coordinates
would suffice to differentiate between objects and obstacles. However
a real track is obviously not just a straight line.

We are going to define a region along the track in front of the
vehicle that must not contain any object. All objects detected within
this region are automatically classified as obstacles and cause the
obstacle detection to react accordingly. This region will be called track
clearance. An exception to this are well known objects recorded in a
track atlas. The track atlas is a list of points along the track that contain
objects which are known to be non-obstacles like for example masts,
guard railings and traffic signs.

4.1 loading gauge

The loading gauge defines the maximal envelope of a railroad vehicle
to safely travel along the railway. This envelope in combination with
the minimal curve radius can be used to calculate how close structures
may come to the track to still allow all railroad vehicles to pass by.
These envelopes are used during track planning and construction to
allow all vehicles that conform to that standard to be operated on
the tracks. For example, if a track is constructed according to the
International Union of Railways (UIC) - C (Figure 23) envelope, all
vehicles that are UIC - C conform can drive on this track, but also
vehicles that conform to the UIC - Standard (Pass-Everywhere) gauge.
The UIC - Standard gauge is the smallest common denominator of the
UIC gauges.

3150 3150 3150 3150

Top of the rail

UIC Pass-Everywhere UIC - A UIC - B UIC - C

42
80

43
20

43
20

46
50

Figure 23: UIC (International Union of Railways) Loading Gauges

38

4.2 track clearance 39

Gmax

Object space

Object space

Obstacle space

object

obstacle

Centerline

Figure 24: Distinction between obstacle and object space

4.2 track clearance

We will use this loading gauge to define two new terms – the obstacle
space and the object space. The object space is the area of our scenery
that does not interfere with our train. For example, a house should be
an object that has enough distance to the track to not interfere with the
train passing by. Such an object belongs to the object space. However,
an object positioned at the center of the track is clearly an obstacle
and thus belongs to the obstacle space. For the train to sucessfully pass
the whole track, the distinction between obstacle and object space has
to be made very carefully. If the threshold is set too wide, too many
objects will be classified as obstacles, resulting in a high false positive
rate which will prevent the train from traveling along the path. Setting
the threshold too narrow is, however, much more dangerous, because
obstacles which will collide with the train may not be classified as
such, resulting in a high false negative rate, which has to be prevented
under all circumstances. A false positive means that the train may stop
even if there is no reason to. A false negative, however, means that an
obstacle will collide with the train, even though the obstacle has been
seen by some of the sensors, but was classified as a non-obstacle i.e.
object.

We know the loading gauge that was used to design the track. Thus,
we can use this information to define our threshold between obstacle
and object space. In reality, the loading gauge is a two-dimensional
curve which would create some kind of tunnel when it is extended
along the track. This means that the obstacle space and the object space
are not simply regions on a map but volumes in 3D space. For the sake
of simplicity we will project all objects into the birdseye-view (top-down
view) and thus only use the most extreme points of the loading gauge
for the width of the train.

4.2 track clearance 40

ei

e′o

e′′o
rcurve

Gmax

2 + ε

Figure 25: Extreme points of the train outline in curves

4.2.1 Naive approach: static outline

Once we know the loading gauge the threshold is set to the maximum
width of the loading gauge plus an ε to make the obstacle space slightly
larger than the actual outline of the (maximum possible) train. This
threshold is shown in Figure 24 as Gmax. An object where any point
on its outline is farther away from the track centerline than Gmax

2 +

ε belongs to the object space (Figure 24) and is classified as not an
obstacle, which is a dangerous assumption because the loading gauge
describes only the most extreme outline of the vehicle on a straight
track. It does not take into account that the vehicle could extend
even further outside the track while passing through a curve (Figure
25). Depending on the curve radius rcurve and the dimensions of the
train, the most extreme points of the outline e′o, e′′o , ei may violate the
threshold severely. Therefore, measuring the normal distance from an
object to the track center and comparing this distance to the outline
of the vehicle leads to a potential mis-classification of obstacles as
non-obstacles.

4.2.2 Dynamic outline

The most extrene points of the train outline ei, e′o, e′′o (Figure 26) depend
on the curve radius rcurve , the distance between the two axles daxle,
the width of the train, or in our case the width of the loading gauge
Gmax, and the length of the train L as shown in Figure 27a. We need

4.2 track clearance 41

ei

e′o

e′′o

Figure 26: Calculating the extreme points to estimate the dynamic outline

to calculate the radii rei , re′o , re′′o (Figure 27b) and compare them to the
radius rcurve to determine the dynamic threshold between obstacle space
and object space.

As seen in Figure 27a, the pivot points of the two axles form a
triangle with the center of the curve whose height hc (derived by
Equation 4.1) corresponds to the radius of the curve described by the
center of the train. This radius (hc) is related to rei through the width
of the train (loading gauge) shown in Equation 4.2. The point eo is the
extension of the line from the center of the curve through ei to the
opposite side of the train. The radius to this point is ri + Gmax which
is the radius to the inner point plus the width of the train. This point
(eo) forms a right-angled triangle with the center of the curve and the
point e′o (or e′′o , respectively). Using Equation 4.3 we can compute the
radius re′o (or re′′o , respectively).

hc =

√
r2 −

(
daxle

2

)2

(4.1)

rei = hc −
Gmax

2
(4.2)

re′o =

√
(hc +

Gmax

2
)2 +

(
L
2

)2

(4.3)

If the train is not symmetrical w.r.t. the axis defined by eieo, the
formulas for re′o and re′′o will differ slightly from each other, as the two

4.2 track clearance 42

ei

e′o

e′′o
r

hc

daxle

Gmax

c

L

(a) Radius to ei

ei

e′o

e′′o

rei Gmax

eo

L

re′′o

re′o

(b) Radius to e′o and e′′o

Figure 27: Calculation of the dynamic gauge

ei

e′o

e′′o

rcurve tinner

touter

Obstacle space

Figure 28: Dynamic thresholds based on the dynamic gauge separate the
obstacle space from the object space

edges of the right-angled triangle wont be of equal length (L
2 +∆, L

2 −∆
versus L

2 , L
2). We assume however that the train is symmetrical, so that

re′′o can be ignored as it is the same as re′o .
After calculating rei and reo the thresholds for the obstacle space are

derived as tinner = (rcurve − rei) + ε and touter = (re′o − rcurve) + ε which
define the separation between the obstacle space and the object space
shown in Figure 28.

5
T R A C K D E T E C T O R

Lane detection for driver assistance systems is a topic that gained a lot
of attention during the last ten years ([7, 28, 31, 32, 57, 27, 60]). Some
approaches work on the acquired images directly, which represent a
perspective projection of the scene ([7, 57, 6]), and some perform a
conversion of the scene into a top down view called Inverse Perspective
Mapping (IPM) ([28, 32, 51, 27]). Most systems use a simple model to
describe the lane, which also applies to railroads. However, only few
systems are designed specifically for railroad detection ([33, 53]). An
obstacle detection system for trains is proposed in [53]. In [33], a vision-
based system for collision avoidance of rail track maintenance vehicles
is proposed. It is based on detecting railroad tracks by applying
techniques similar to lane detection for driver assistance systems. The
spatial period of the sleepers and the distance between the rails is used
to calibrate the camera parameters. A piecewise quadratic function
is then fitted to candidate rail-pixels in the acquired (perspective)
image and compared to the previous frame. However, to the best of
our knowledge, no fully functional vision based obstacle detection
system for railways exists to date. This work uses the well researched
field of lane detection and tracking and extends it to the field of train
applications.

5.1 comparison street vs. railway

While the basic task of lane detection in street and railway scenarios
is the same, there are several properties that require special attention
and may help us to improve the robustness of automatic train sys-
tems. Table 2 lists some important differences, which are discussed
subsequently.

First of all, the lane width on railways is obviously fixed along the
whole path. Otherwise, the train would not be able to drive the com-
plete track. The width of lane markings on streets, however, depends
primarily on the type of road and is generally limited by a minimum
width required by law, which in turn depends on the country the
street is located in. The lateral offset of a car relative to the center
of the lane is variable, which is especially true for wider lanes. We
will later see that a fixed lateral offset can be exploited to reduce the
possible track candidates.

Road lane markings are designed in a way that they are optimally
visible to a human observer (Figure 29b). Once they wear off too
much, they are repainted. In contrast, the only purpose of railroad

43

5.1 comparison street vs . railway 44

Street Railway

variable lane width fixed lane width

variable lateral offset zero lateral offset

varying type of lane markings fixed “lane markings”

general lane appearance is relatively

homogeneous

several different (inhomogeneous)

“lanes”

lane markings are designed for

optimal visibility

visibility is not guaranteed

lane markings have no volume and

thus don’t cast shadows on the

ground

tracks have a certain height and thus

cast shadow on the ground

construction sites and obstacles can

easily change the path of a car within

a road

vehicle path through the world

coordinate system is fixed

the speed of a car is generally adapted

to weather and visibility conditions

automatic trains are operated at

nearly constant speed independent of

most weather conditions

the horizontal movement of a

car-mounted camera is low due to the

low height of the vehicle

swinging of the train causes

substantial change of the camera

position along the path

Table 2: Properties of street lanes and railway tracks

5.1 comparison street vs . railway 45

(a) Inhomogeneous lanes between railroad lines (average case scenario)

(b) Good visibility of lane markers and very homogeneous roads

(c) Summer with vegetation (d) Bad lighting because of shadow

(e) Summer with no vegetation (f) Good winter conditions

Figure 29: Comparison between road lanes and railway tracks, and overview
of different scenarios

5.1 comparison street vs . railway 46

tracks is to guide the train. It is just a side effect, if the tracks are
easily visible to an observer. Although in many situations the tracks
are very prominent, in general, visibility is affected by changes in
lighting and weather in a much stronger way than road lane markings.
An advantage of rails over lane markings is that they are constantly
grinded each time a train rolls over them. This keeps the top of the
rails from corroding. The appearance of the street itself is also very
homogeneous (Figure 29b), compared to the track bed of railways
(Figure 29a). The track bed or, in general the space between the rails,
consists for example of gravel, asphalt, snow or even grass (Figure
29a). The last significant difference in the visual appearance is the
volume of the tracks. Lane markings are flat and basically have no
volume or height. This means that they can not cast shadows on the
ground and thus the detection of the lane marking itself is invariant
to the position of the sun, if no other object casts a shadow on the
street. Tracks, however, have a certain height, i.e. several centimeters,
and thus cast shadows, which create additional edges in the image
and weaken the visual appearance of the real edge.

If we combine the fact that the lateral offset is fixed and that the
position of the track can not be changed easily, it is clear that the
train always moves on a fixed path with respect to the world coordinate
system. This allows a much tighter integration of a-priori information
like the prediction of the vehicle position at upcoming points in time.
However this is only true for the whole vehicle, since trains have a
strong trend to swing left/right especially at higher speeds. This is
due to the great mass in combination with the suspension that is
designed to make the ride comfortable for the passengers. This strong
swinging, combined with the fact that the train is considerably higher
than a regular car, results in a displacement of the camera system that
can not be predicted easily. This means that, even if two frames are
acquired at the exact same position on the track at two different points
in time, the position and orientation of the camera with respect to the
world coordinate system is not the same.

A final, but very significant property are the weather conditions.
Trains are operated at constant speed over a much greater range of
weather conditions than a normal car. For example, even if the track is
nearly fully covered with snow, the trains are still operated with no
or only a slight reduction in speed, because they need to keep their
timetable.

An overview of common scenarios is provided in Figure 29. We
can see that the amount of vegetation that is allowed on the track has
a large impact (Figure 29c) on the appearance of the space between
the tracks. Figure 29e shows one of the best case scenarios for track
detection where the top of the rail reflects light quite well. However,
one can not rely on this feature. Under bad lighting conditions the

5.2 inverse perspective mapping 47

acquired image

Horizon

Region of Interest

center-line

Camera

Pzero

Region of Interest

ROIwidth

R
O
I h

e
ig
h
t

ROIleft

R
O
I n

e
a
r

Z

X

v

u

perspective correction

IPMwidth

I
P
M

h
e
ig
h
t

(ROIleft, ROInear)
Z

X

Figure 30: Acquisition of the IPM image

brightness difference between the tracks and the surrounding area
gets problematically low (Figure 29d).

5.2 inverse perspective mapping

Based on the observations of the railway track properties, we are
able to design algorithms that are optimized for those scenarios. By
transformation of the perspective view into a birds-eye orthogonal
view, also called IPM ([27]), we gain the ability to directly check all
the geometric constraints that our algorithm requires. In addition, the
transformation also makes it easier for appearance based algorithms
to find matching regions, because the perspective projection does no
longer deform the objects depending on their location and thus the
track width remains constant over the whole image.

Figure 30 shows the IPM step. The camera acquires the scene in front
of the train, which is transformed through a perspective projection
(Figure 30) (acquired image). While it is possible to find parallel lines
in perspective images [57], it is much simpler, if one has access to the
undistorted view. As our algorithm heavily relies on the fact that the
tracks are parallel with constant distance at all times, it makes sense
to perform an IPM prior to the track detection. We also mentioned
that the train undergoes a swinging which translates and rotates the
camera in the world coordinate system. To be able to correctly calculate
an Inverse Perspective Mapping, we use the camera parameters to

5.3 pre-processing 48

calculate the perspective projection of every point in the birds eye view.
This is slightly more complicated than warping the input image, but
provides higher flexibility in dealing with the moving camera and non-
planar surfaces (which are assumed by image warping techniques).

To calculate the IPM, a region of interest in world coordinates is de-
fined. For example, 6 meters left, 6 meters right and from 5 to 45
meters in front of the camera. Currently, we also require the world
in front of the camera to be a planar surface and thus assume a z-
Coordinate of zero. This could be changed in the future by integrating
the surface curvature from LIDAR data.

The extrinsic and intrinsic camera parameters are calibrated offline
since they are not going to change once the system is in place.

 x

y

z

 =

ROIle f t +

ROIwidth∗xipm
IPMwidth

ROInear +
ROIlength∗yipm

IPMheight

0

 (5.1)

 x′

y′

z′

 = Text + Rext ∗

 x

y

z

 (5.2)

(
u

v

)
=

(
x′∗ fx

z′ + cx
y′∗ fy

z′ + cy

)
(5.3)

We need to scale and offset the points in the IPM image to fit in
the desired Region of Interest (ROI) (as seen in equation 5.1). ROIle f t
denotes the outermost left point of our (physical) region of interst and
ROInear defines the closes point of our region of interest. Combined
with the width (ROIwidth) and height (ROIheight), the region of interest
is completely defined in physical space (see Figure 30), because, for
now, we assume the ground to be a flat surface. In equation 5.2,
the extrinsic camera parameters Rext (rotation of the camera) and Text

(translation of the camera) are used to transform the world coordinates
of our ROI into the camera coordinate system. These points are then
projected onto the image plane by using Equation 5.3 with the intrinsic
camera parameters fx, fy (focal length) and cx, cy (center of projection).
This finally establishes a relation between the points in the IPM image
(xipm, yipm) and the points in the acquired image (u, v). This is done
for every pixel in the IPM image and thus reverses the perspective
projection of the camera as seen in Figure 30 (perspective correction).

5.3 pre-processing

The first step of the processing chain is some preprocessing after
which only candidate pixels for edges should remain. Starting with
the input image (Figure 31a) from the camera, the detector creates a
birds eye view by performing the Inverse Perspective Mapping (IPM)
from Section 5.2 on the image. The resulting IPM image is shown

5.3 pre-processing 49

(a) Example image for track detection

(b) Inverse perspective mapping (birds-eye view)

(c) Inverted image depending on the scene (snow/no snow)

(d) Difference of Gaussian edge image

Figure 31: Preprocessing steps of the track detector (images are rotated 90◦

clockwise)

5.4 dynamic mask 50

in Figure 31b. If the camera parameters are calibrated correctly, the
mapping of the tracks should be perfectly parallel to the y axis of the
image.

Depending on the scenario, the grayscale values of the image may
be inverted. For example, if the environment is white due to snow,
the the image should be inverted to make the track bright and the
background dark. This is a setting that does not change during the
operation and can be adjusted at startup.

The edges in the image are enhanced using a Difference of Gaussian
(DoG) filter which calculates the difference of two images with a dif-
ferent sigma of the Gaussian kernel. For our camera setup the best
results are achieved by choosing σ1 = 7 and σ2 = 3.

5.4 dynamic mask

Consecutive views of the track are heavily correlated. This is not
surprising because the train can not jump from one position to another.
This also means that the position of the track in two consecutive images
is very likely to be close. We exploit this fact by masking unlikely
regions in the IPM image based on the previous track.

Using the previously detected track, Ct−1 in Figure 32, the track
mask is calculated as the space between two parallel curves, FL and
FR, of Ct−1. The distance between FLand Ct−1 (as well as the distance
between FR and Ct−1) is half the mask width wmask

2 . The mask width is
defined as

wmask = wtrack +
λ

1− ∆t
(5.4)

where wtrack is the track width (in our case 1 meter), λ is a growth
factor that specifies how big the mask should be extended after one
second and ∆t is the age of the previousy detected track Ct−1. If the
previously detected track is very recent, the track mask is hardly
extended, as the train can only move at a certain speed. After a short
period of time, the train will still be very close to the previous position,
resulting in a track that is almost unchanged in the current view. If a
track is incorrectly detected, the track mask will remove parts of the
rails, but only temporarily. When the track can no longer be detected,
the previously detected track grows older and the track mask will
grow as well, at some point again including the real rails. Tracks older
than one second are no longer considered. If the previous track is older
than one second, there was probably a mis-detection and the track
mask is increased to cover the whole image.

5.5 local maxima search 51

Ct−1

maskt

maskt′
maskt′′

wmask

FR(Ct−1,
wmask

2)

FL(Ct−1,
wmask

2)

Figure 32: Track mask example at three different ages

Figure 33: Extraction of valid edge pixels by detecting local maxima with a
sliding window approach

5.5 local maxima search

After the preprocessing step in Section 5.3, many incorrectly enhanced
edges remain (Figure 31d). Even if the lighting is bad we have to
assume that the rails are still a more prominent feature than the
immediate background. We are using a sliding window approach to
detect local maxima in the image.

The image is split into ten equally sized slices along the y axis. For
every slice the threshold (t0, t1, ..., t9) for the local maxima detection is
calculated individually (Figure 34). This is because the whole image
spans a big region in the scenery which causes the IPM image to get
very blurry for points that are far away from the camera, which is
obvious, since lines at the top of the image are extrapolated from very
few image points compared to lines at the bottom of the image, which
are very close to the camera.

We assume that the horizontal gradient at rail-edges is relatively
high compared to the the immediate surroundings. However, we
can not assume that it is the strongest gradient in the whole line.
There might be light reflections or other structures that have a very
strong gradient. Instead of taking the maximum gradient, we calculate
thresholds as a quantile of the horizontal gradients of ten equidistant
lines within one slice (Figure 34). The quantile is configurable, but our
tests have shown that the 99% quantile provides overall acceptable
results.

The local maxima are detected for each line by sliding a window of
31 pixels over the line (Algorithm A.1). The algorithms searches for a
value that is lower than the current value minus tslice from the current
point 15 pixels to the left. If such a value is found the algorithm goes
on and does the same with the 15 pixels to the right. If both sides
contain such a value and all values are below the center pixel, the
center point is marked as a local maximum. This local maxima image

5.5 local maxima search 52

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

Qlmax

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Qlmax

Figure 34: Slicing of the preprocessed image and calculation of the slice
thresholds

will have many gaps in the rails especially in the parts close to the
train. This image is then enhanced with morphological operations.
The supported operations are

• Erosion - v / dilation - V, with a 3× 3 vertical structuring element 0 1 0

0 1 0

0 1 0

 (5.5)

• Erosion - h / dilation - H, with a 3 × 3 vertical structuring
element 0 0 0

1 1 1

0 0 0

 (5.6)

• Erosion - s / dilation - S with a 3× 3 rectangular structuring
element 1 1 1

1 1 1

1 1 1

 (5.7)

Our algorithm parses a filter command and applies the operations in
the corresponding order. The most successful filter on our data is VV ,
which are two vertical dilations.

5.5.1 Block based thresholds

The slice-based threshold selection works well, if the rails are very
prominent inside the whole slice. However, under bad lighting condi-
tions, or when the rails are inside a shadow while the rest of the slice

5.6 blob detection (connected components) 53

(a) (b)

Figure 35: a.) Results of the blob extraction following a b.) removal of too
small contours

is not, this approach will fail. To cope with such scenarios, we have
to change the assumption that the rail edges are among the strongest
horizontal gradients within a whole slice.

It is still assumed that the rail edges have a very strong horizontal
gradient, but the area within which the thresholds are calculated is
reduced. The vertical slicing is a mechanism to cope with changes of
the rail appearance along the track. Similarly, splitting a slice further
along the horizontal axis will result in a more localized threshold
selection. However, instead of splitting the slices, we are splitting
the whole image in equally sized blocks of 50 × 50 and calculate
the threshold for each block as the 99% quantile of the horizontal
gradients. The rest of the local maxima detection remains the same as in
the slice-based version.

5.6 blob detection (connected components)

The output of the local maxima search is not necessarily a one pixel
wide line and almost never a straight line segment. The general idea
is to extract the contours of the connected components in the local
maxima image. This is achieved by using the findContours function of
the OpenCV library, which is based on the border following algorithm
described in [50]. The result of the blob extraction is a list of contours
of connected components in the image. A contour is described as a
list of (u, v) image points. When the contours of lines without holes
are extracted, the result (Figure 35a) looks just like the result from the
local maxima search. However, contours with a length below a certain
threshold are removed (Figure 35b).

5.7 line-segment fitting 54

Figure 36: Fitted line segments to the connected components

α

S2

S1

d(S1, S2)

p1

p2

Figure 37: Distance and angle between two segments

5.7 line-segment fitting

The contours of candidate lines are not yet useful to further processing,
because they consist of too many points and may not describe a line
segment at all (e.g., if a circular blob was extracted). Each line segment
in a slice corresponds to a real world distance of approximately 4-
6 meters. Our tests have shown that, at this scale, we can safely
approximate the extracted contours with a straight line (Figure 36),
because the curvature of the track is not big enough to produce an
error that would impact further processing. Lines that are shorter than
a certain threshold are removed to eliminate spurious detections.

5.8 line-segment filtering

All previous steps belong to generic pre-processing, which does not
take into account the intrinsic track constraints like the parallelism
of the rails and the exact track distance. These properties can be
used to reduce the track candidates even further. Because of the
transformation from the perspective view into a birds eye view (Inverse
Perspective Mapping), the measurement of these properties is quite
simple.

We first calculate the infimum distance (Equation 5.8) between every
pair of line segments in the slice.

d(S1, S2) = inf {‖p1 − p2‖2 : p1 ∈ S1, p2 ∈ S2} (5.8)

5.9 curve fitting 55

We then calculate the angle between all pairs of segments (Si, Sj)

with a distance that does not deviate from the target distance w by
more than a certain threshold td . If the angle is below the threshold
tα, the track segment is a valid candidate.

g(w, td, tα) =
{
(Si, Sj) : |d(Si, Sj)− w| < td, |∠(Si, Sj)| < tα, ∀Si, Sj ∈ S

}
(5.9)

The set g(w, td, tα) of all valid segments in a slice is give by Equation
5.9. An example for the angle ∠(S1, S2) between the two segments S1

and S2 is shown in Figure 37 as α.
The rails of the track are almost perfectly parallel since they have

a constant distance over the whole track with only a slight variation
(< 5cm). Accordingly non-parallel segments can only be encountered
due to measurement errors (i.e., slightly wrong camera parameters,
errors in the pre-processing). Therefore, the threshold for the angle-
and distance variation should be selected very conservatively. Our
tests have shown that good values for tα are 11 degrees and ten pixels
for td.

The output of this step are not only single segments that conform to
the filtering constraints, but rather pairs of segments that matched the
filtering constraints. These pairs are theoretically already correspond-
ing parts of the left and the right rail.

5.9 curve fitting

To derive a track estimate from the candidate segments, we need to
apply some kind of track model and find the model parameters that
are best supported by the detected candidates.

There are various possible models for street lanes. The most common
algorithms use piecewise linear models ([25, 4]), b-splines ([56]) or
polynomial models ([31, 29]). Until recently, the railway track design
was dominated by clothoids ([36]) because they linearly increase the
curvature with the path length (Figure 38). This results in a smooth
change of the centripetal force.

In theory, using the clothoid curves as the underlying model and try-
ing to find model parameters that represent the detected line segments
would be the most accurate procedure. There are several techniques
([35, 2]) to fit piecewise clothoid curves to lines. They are, however,
time-consuming and in our case not necessary. We only have very
short curve segments within which the curvature slightly changes.
We also need a simple parameterization with very few parameters.
Piecewise spline approximations would result in a near perfect rep-
resentation of the track, but at substantial processing costs and the
fact that two curves which are very similar may have substantially
differing approximations.

5.9 curve fitting 56

y

x

Figure 38: Part of a clothoid curve of degree 2

5.9.1 Polynomial fitting

One possible curve approximation are 2nd order polynomial curves

f (x) = a2 · x
2
+ a1 · x + a0 (5.10)

The parameters of such a curve can be estimated with least squares
fitting by solving the following system

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xn x2
n

 ·
 a0

a1

a2

 =

y1

y2
...

yn

 (5.11)

The solution

 a0

a1

a2

 is calculated by pre-multiplying with the the

inverted matrix

1 x1 x2

1

1 x2 x2
2

...
...

...

1 xn x2
n

−1

5.9 curve fitting 57

1 x1 x2

1

1 x2 x2
2

...
...

...

1 xn x2
n

−1

·

1 x1 x2

1

1 x2 x2
2

...
...

...

1 xn x2
n

 ·
 a0

a1

a2

 =

1 x1 x2

1

1 x2 x2
2

...
...

...

1 xn x2
n

−1

·

y1

y2
...

yn

(5.12)

But since the input data is subject to noise and errors, the matrix
has to be inverted by calculating a pseudo-inverse, which then yields

the solution for

 a0

a1

a2

 as

 a0

a1

a2

 = pinv

1 x1 x2

1

1 x2 x2
2

...
...

...

1 xn x2
n

 ·

y1

y2
...

yn

 (5.13)

If we use higher order polynomials, the fitting becomes subject to
noise and yields generally worse results. They are a better fit for the
data, but not the underlying track.

5.9.2 Rotated polynomial curve

We derive the best fitting curves after the line-segment filtering of Sec-
tion 5.8 using the technique described in Section 5.9.1. This means
that our input data is a set of point pairs describing the line segments.
These points will be used as the input for the polynomial fitting. They
are in image coordinates and, because the tracks are extending roughly
along the z axis of the train, the rails extend along the y-coordinates in
the image. Fitting a polynomial to these points would be very unstable,
or not possible at all, if the points are not a function of x.

To fit a polynomial curve to a generic dataset, the data has to be
transformed (rotation,translation) into a coordinate frame in which
the points to be fitted are a function of x.

The first step is to determine the rotation of the points by least-
squares fitting a line to them using the fitLine function from the
OpenCV library (Figure 67). The rotation is thus simply atan

(
dy
dx

)
.

The translation parameters are set to transform the leftmost point into
the origin. The transformed points are then fitted with a 2nd order
polynomial as described in Section 5.9.1. The result from the fitting
procedure is stored in combination with the rotation and translation
parameters as a tuple (a0, a1, a2, θ, uo, vo). If the curve needs to be
evaluated, we need to specify a rectangular region of interest which
is usually the whole image, i.e. (0, 0, width, height). This rectangle is

5.9 curve fitting 58

x

y

(a) Unrotated

x

y

(b) Rotated and translated to enable curve
fitting

Figure 39: Segments used for polynomial fitting

rotated and translated according to the parameters θ, u0, v0. To evalu-
ate the polynomial only within the rotated rectangle, the algorithm
calculates the intersection of the polynomial with all four lines of the
rectangle.

Each line of the rectangle can intersect with the polynomial in at
most two points, which results in a maximum of eight intersection
points {I1, I2, I3, I4, I5, I6, I7, I8}. The example in Figure 40 shows all
eight intersection points. Since we are only interested in the part of the
curve that is inside the rectangle, the lower bound of our evaluation
interval can not be less than ul and the upper bound can not exceed
uu. The initial upper and lower bounds (uu, ul) are calculated as

ul = min{uP1 , uP2 , uP3 , uP4} (5.14)

uu = max{uP1 , uP2 , uP3 , uP4} (5.15)

An intersection point is only valid if it lies on the corresponding
segment of the rectangle. For example, in Figure 40 the point I2 is
valid because it lies on the segment P1P3 whereas I3 is not valid since it
lies outside the segment P1P2. If valid intersections are found, we can
assume that at least two intersections are valid. The only case in which
only one intersection would be found is if the parabola touches exactly
one of the segments in only one point. In this case, the whole curve is
outside the rectangle and does not need to be evaluated anyway.

In all other cases the limits of the evaluation interval (ul , ur) can be
calculated as

ul = min{uIj : I is valid} (5.16)

uu = max{uIj : Ij is valid} (5.17)

5.9 curve fitting 59

v

u

u1

u2

I1

I3
I2

I6

I7

P1

P2

P3

P4

I5

I4 I8

ul uu

Figure 40: Calculating the evaluation interval

5.9.2.1 Fixed rotation

This algorithm provides a generic method to fit a polynomial to a set
of points. However, our input data is heavily constrained along the y
axis. As shown in Figure 39a, most segments after the line segment
fitting in Section 5.7 are almost orthogonal to the x axis. Therefor a
simplification of the rotated polynomial curve fitting is to rotate the
points 90° clockwise, which can be further simplified by switching the
x and y coordinates.

5.9.2.2 Matching quality

After the curve is fitted to the input points, it is approximated with
line segments by sampling the curve inside the image rectangle
(0, 0, IPMwidth, IPMheight). The matching quality is the average of the
squared minimum normal distances of all input points to the line
segments of the approximated curve

m(C, T) =
1

#T ∑
p∈T

in f {‖p− pS‖2 : pS ∈ S, S∈C} (5.18)

where C is the set of all line segments of the approximated curve, T
is the set of all input points and #T is the number of input points.

5.9.3 Track candidates

Simply adding all points from all detected line segments into the
fitting procedure does not work because the least-squares fitting will

5.9 curve fitting 60

Pzero

Physical Region of Interest

ROInear

ROIlength

dfront

Figure 41: Track centerline must pass through the point Pzero

just fit a curve to the data that does not correspond to the real track.
Unless there is a substantially higher number of good track segments
compared to the number of false detections we need to find a way to
determine the best track candidate from all segments. This requires
additional information of the track properties to remove unwanted
segments.

The two strongest properties are

• track width
As mentioned in earlier sections, the track width is fixed to one
meter. Thus, the left and right rail are half a track width away
from the centerline. Any segment that violates this constraint
after the track fitting is either a false detection or the fitted track
is invalid

• the centerline must pass through the point Pzero

Figure 41 shows three different track curves that all pass through
the point Pzero which is the pivot point of the frontal axle. This
is obvious since the width of the axle can not change during
operation and the position of the pivot point can not change
either

Using these properties, we can define a metric that outputs how good
the track segments fit our model. The first step is to convert the
point Pzero in Figure 41 to image coordinates by scaling dzero + ROInear

according to the relation between ROIlength and the height of the IPM
image (IPMheight). The resulting image coordinate of Pzero is

Izero =

(
0,

dzero + ROInear

ROIlength
· IPMheight

)
(5.19)

which assumes that the physical region of interest is symmetrical
along the x axis. This is true because we do not change the physical
ROI during operation and must cover both sides of the track equally.

The output of the line-segment filtering from Section 5.8 are pairs of
segments. Since we are not interested in the individual left and right
rails, the start and end points of the left and right rails are averaged

5.10 hough map 61

to get a centerline from each pair. Now, all centerline segments from
the first slice are combined individually with the point Izero and a
track curve is fitted to every one of those combinations. Calculating
the matching score with Equation 5.18 yields the parameter that
corresponds to the inverse of the “track”-ness. If it is zero, we have a
perfect match and assume that this is a valid track, higher values are
worse. The user can define a threshold tc at which the curve candidate
is no longer a valid track. All candidates below the threshold are kept
and are combined with the candidates of the next slice. In addition,
the algorithm assumes that track segments from previous slices may
not have been visible or undetected, so every segment of the slice is
added as a new track candidate.

5.9.3.1 Selection of the best candidate

An overview of the algorithm is shown in Algorithm A.2. All of the
candidates conform to the defined threshold. However, the algorithm
assumes that the best track candidate will contain the most track seg-
ments. This is a reasonable assumption since only one track segment
per slice can be chosen for a given track candidate and thus a candidate
with many segments is “supported” by segments from several slices.
If two candidates have the same number of supporting segments, the
one with the lowest matching score is selected. The reason why the
matching score alone can not be used is that a track candidate with
very few segments may have a better fitting polynomial, but does not
necessarily depict a valid track.

5.10 hough map

Polynomial fitting provides an accurate estimation of the track in front
of the train for ≈ 75% of the tested frames. However, the polynomials
do not necessarily represent possible tracks. This means that a track
candidate which best fits the data might not be a possible track at all.
In reality, the number of possible tracks is very limited. There is an
upper bound on the curvature of the track and the rails in front of the
train emerge all from exactly the same point Pzero . This was already
mentioned in Section 5.9.1. Such constraints can be used to search the
scene for rails that are from a predefined set of model parameters.
However, simply searching a predefined set of parameters for match-
ing points in the image may be very time consuming, especially if the
number of parameters is high. Furthermore, most of the points in the
image will be checked several times, whether they contain an edge
pixel or not.

A well known solution to this problem is the hough transformation,
which builds a parameter space for the given model (line, circle).
For every pixel in the image, the values in the parameter space for
each model the pixel may belong to are increased. The hough trans-

5.10 hough map 62

Figure 42: Local maxima in wrong places

form can, in theory, be expanded to more complex models, but the
time and space requirements are growing exponentially with the
number of dimensions. Since our model already has six parameters
(a0, a1, a2, θ, u0, v0), the hough transform would outright use up all the
available memory, and more. We can reduce the number of dimensions
to three, if we use the fixed rotation approach which will always rotate
90° clockwise around the origin. But the bigger problem in our case is
the fact that the edge pixels are often not detected in the correct places
due to varying lighting conditions. Figure 42 shows part of a track
where many edge pixels were detected, but due to changes in lighting
conditions, the border of the rails were detected instead of the ridge.

This could be prevented by changing the filter parameters and the
detection function, moving the problem from one place in the track
detection algorithm to another. However, intuitively, the general track
information can still be derived from the image, even if the edge pixels
are misplaced. We need some kind of fuzzy detection scheme, which
uses the fact that many edge pixels might be placed almost correctly,
but not exactly where they belong.

Instead of just adding to the accumulators for the parameters that
correspond to the edge points, we also add lower values to parameters
that correspond to neighboring pixels. This approach is closely related
to the work in [23]. This approach requires fewer curve candidates to
detect the tracks because a curve will also be detected if it matches a
parameter only approximately, visualized in Figure 43. If we assume
that the white edge pixel belongs to curve C2, but was detected in the
wrong position in the convetional hough transformation, it would not
increase the accumulator for these parameters, even if the pixel really
belongs to the curve C2.

5.10 hough map 63

(C1, 0.3)
(C5, 0.3)

(C2, 0.3)

(C2, 0.7)

(C2, 1.0)
(C8, 0.3)

Edge pixels

Hough Map

Figure 43: Hough map

We want a misplaced edge pixel to still have an impact on the
accumulator of the given parameter. In our case, the white edge
pixel will increase the accumulator for the curve C2 by 0.7. This is
implemented as an array of arrays of parameters. Every point in the
hough map has an underlying array which holds the parameters. Each
parameter is augmented by the weight which describes how strongly
that cell corresponds to the parameter. The weight is 1.0 if the curve
passes exactly through the cell and 0.0 if the cell is not related to the
parameter at all. The algorithm works in three steps:

1. Hough map initialization.
All possible curves (parameter sets) are sampled within the
region that is covered by the hough map. The curves are added
to the according cells with their weight

2. Hough map evaluation
For every edge pixel in the edge image, the parameters belonging
to the hough map cell are incremented according to the parameter
weight

3. Parameter selection
The list of parameters is sorted by their accumulator and the
parameter with the highest accumulator value is chosen

The first step is the computationally most expensive one, but has to be
done only once, unless the parameters or the hough map size changes.
For every point (xo, yo) in the sampled curves, we add the parameter
in a N×N neighborhood to the hough map. The weights are calculated
from a 2D Gaussian distribution with µ = 0 and a certain σ

weight(x, y) =

|x− x0| < ε, 1
2πσ² · e

−
(

(x−xo)2+(y−yo)2

2·σ2

)

otherwise, 0
(5.20)

5.11 results 64

In our tests good results were achieved with ε = 9 and σ = 1.0.
Steps two and three are executed for every edge image. For every
pixel, we calculate the corresponding position of the hough map cell
(xH, yH) =

(
x · wH

wI
, y · hH

hI

)
, iterate over the parameters in the cell and

increase their accumulators. After all edge pixel have been processed,
each parameter has a certain accumulator value. This value has to
be normalized by the total number of cells the curve occupies in the
hough map. If the curve has no self intersections, the normalization
factor could also be approximated with the total curve length instead
of the number of cells covered. The parameter with the highest value
has the strongest support by the edge image and is thus the detected
track curve. Before the next edge image is processed, the accumulators
are reset. The algorithm is described in pseudo-code in Algorithm A.3.
If we do not normalize the values, shorter curves, which cover less
cells, would be ranked down even if they are a much better fit than
longer curves.

5.11 results

For our tests we used the Basler scout scA1300-32gm gray-scale camera
mounted inside the driver’s cabin with a vacuum cup. To evaluate
the quality of the track detection, we manually marked the left and
the right rail in 377 images to generate a ground truth. A centerline
between the left and right rail was interpolated to make the data
comparable to the output of the detectors. For all frames in the test
sets, the horizontal difference (w.r.t to the train coordinate system)
between the detected centerline and the ground truth centerline is
calculated. These values are converted from pixels to meters and called
the detection error. Giving a single value to specify the quality of the
detection is not sufficient because the detection error usually increases
with the distance from the train. Instead, we plot the detection error
over the distance from the train.

The first scenario is a winter scene with snow coverage on the
railway and the surroundings. The train moves through a right turn
and a car is crossing the tracks in the middle of the curve. Four frames
of this scenario are shown in Figure 70. The upper most images show
the view of the camera with an overlay of the detected track, using the
track detection with polynomial models from Section 5.9.3. The middle
images show the IPM view of the region of interest in front of the train.
The ROI in our tests is always four meters to the left, four meters to the
right, starts five meters in front of the train and extends 40 meters in
front of the train. The bottom-most images show the outputs of the
local maxima detection from Section 5.5 after applying the track mask
from Section 5.4. The track mask in Figure 70a is not applied because it
is the first image in the scenario without any previous detected tracks.
Figure 44a shows the detection error using the polynomial models.

5.11 results 65

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

5 10 15 20 25 30 35

E
rr
or

(m
)

Distance (m)

50% quantile
mean error

(a) Winter scene

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40

E
rr
or

(m
)

Distance (m)

50% quantile

mean error

(b) Problematic trees scene

Figure 44: Detector error with polynomial model

5.11 results 66

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 30 35

E
rr
or

(m
)

Distance (m)

50% quantile

mean error

(a) Winter scene with artificially degraded detection result by using the Problematic trees
track base

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5 10 15 20 25 30 35 40

E
rr
or

(m
)

Distance (m)

50% quantile
mean error

(b) Problematic trees scene

Figure 45: Detector error in Hough-map detector

5.11 results 67

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

5 10 15 20 25 30 35 40

E
rr
or

(m
)

Distance (m)

50% quantile

mean error

Figure 46: Problematic trees scene with heavily reduced track base

Even at a distance of 32 meters 75% of the detections are less than nine
centimeters away from the correct track and 97.5% (represented by the
whiskers of the plot) of the detections are closer than 15 centimeters.

In the second scenario (Problematic trees scene, Figure 69), the train
drives along a forest, past two train stations and over a small bridge
which amounts to about 1.5 kilometers (the whole track has a length
of 14.9 kilometers). The weather is cloudy with slight rain. The local
maxima images in Figures 69a-69d are shown without a track mask.
This is only included for completeness. The detector itself applies the
mask like in the Winter scene. This is one of the more challenging
scenarios because the trees around the track are very strong track
candidates after the IPM conversion. This is especially noticeable in
Figure 69d. However, Figure 44b shows that 75% percent of the detec-
tions up to a distance of 40 meters are still closer than 18 centimeters
to the correct track, if we look at the 97.5% quantile, which includes
everything except for complete mis-detections. The detected track is at
its maximum 0.6 meters away from the correct track at a distance of
40 meters from the train.

For the hough map approach in Section 5.10, the ground truth from
the Problematic trees scene is used to initialize the hough map which
consist of 377 curve candidates. Many of these candidates are almost
equal because the trains drives along several straight track segments.
As input to the hough map detector, we use the local maxima images
without applying a track mask and with a VV filter (Section 5.5).
Sample input to the detector is shown in Figures 69a-69d in the
bottom most images. It is clearly visible that the detector has to cope
with many incorrect edges. Figure 45b shows that the hough map

5.11 results 68

detector outperforms the polynomial model detection in Figure 44b.
Even at a distance of 40 meters, 75% of the detections are closer than
10 centimeters to the correct track, with 97.5% being closer than 17
centimeters. This result is a bit skewed because the tracks used to
initialize the hough map are from the ground truth of those images.
The detector still needs to determine the correct track candidate for
the edge-images, but it has an “unfair” advantage because it can
theoretically find the exact track for the corresponding image. To
prove that the hough map approach also works with a generic track
data set, we initialize the hough map with a small subset of the ground
truth from the Problematic trees scene. The reduced dataset consists
of every fourth track candidate from the ground truth, which means
that 75% of the candidates are omitted. In this case it is obvious that
the error must increase because the hough map can only output track
candidates that are known prior to the creation of the map. But it still
should be able to find the best matching candidate to a given dataset
instead of returning random results. Figure 46 shows that the overall
detection is still very good since 75% of the detected tracks are closer
than 10 centimeters to the original track, despite the fact that 75% of
the ground truth data have been omitted. Furthermore, 97.5% of the
detected tracks are closer than 45 centimeters to the correct track, even
at a distance of 40 meters.

Finally, the hough map based on the full ground truth of the Problem-
atic trees scene is used on the Winter scene data. Figure 45a shows that,
even though the data contains no track candidates that are a perfect
fit for the data, still 97.5% of the detected tracks are closer than 40
centimeters to the correct track at a distance of 30 meters.

These results show that the polynomial model detector provides a
good overall solution for our problem, but it can considerably mis-
detect tracks, if the conditions are bad enough. In comparison, the
hough map detector provides very robust results, but needs a good
track base that represents the whole spectrum of possible tracks in
front of the train. To improve the hough map results, one could extract
the possible track candidates from a map of the whole railway and
make sure that a diverse set of track candidates is used to initialize
the map.

Part IV

S E N S O R S I M U L AT I O N

6
S E N S O R S I M U L AT I O N

6.1 motivation

To get the approval of the Austrian railway authority for an au-
tonomous train, numerous requirements have to be met. One obvious
requirement is to prove that the algorithms work in every possible
scenario. This is, however, a task that can not be achieved in a finite
time span. If we take only a very simple scenario, e.g. “a person is on
the tracks”, we would need to vary the size, position and posture of
the person as well as the speed of the train. If we have three setups for
the size, the position and the posture and five different train speeds,
we would need to test 135 scenarios. Assuming that we have to do
each test five times (which is an arbitrarily chosen low single digit
number) to get a (somewhat) reliable result, this would already mean
675 tests. Since the system has to cope with sensor defects, it needs to
be done for combinations of the available sensors simulating sensor
failures. So even for this simple test, which does not even include
vehicles, other trains, several people, different weather conditions
etc., there would already be the need for several thousand tests. And
even if all those tests would be feasible, any changes to the system
that need recertification would require substantial time and result in
non-neglectable costs to do all these tests again.

In software development, there is a standard solution to this prob-
lem, namely unit tests. If one can prove that a low-level system works
flawless within given bounds, tests of higher level systems can be
based on the assumption that the lower level systems are without
errors. If changes to the low-level systems are made and they still pass
these tests the whole system is assumed to be working correctly.

To transform this approach to our scenarios, we need a way to
test the low-level object detection algorithms individually. Normally,
we would test the whole system as mentioned above, but then we
could not argue about the correctness of an individual component. If
a component is changed, the whole system has to be re-evaluated to
prevent unexpected side effects. Doing a high-level test of the system
means checking whether the vehicle operates as expected in certain
situations. There would only be few variables to check, but a huge
amount of tests to gain a certain degree of confidence that the system
works correctly is required.

Testing only a single component however requires much more
knowledge about the data that is provided to the system. For example,
an object segmentation algorithm that works on data from a LIDAR will

70

6.1 motivation 71

give each laser-return an ID to which object it belongs. To verify the
correctness of such an algorithm, one needs to know this information.
This could be achieved by manually labeling each point in the data
which is virtually impossible for regular scenarios (i.e. a Velodyne
HDL-64E S2 outputs ∼ 100.000 points per rotation). Another way is
to create virtual data and simulate the output of the sensors. Given
such a system, one could create an equivalent to unit tests in software
engineering for point-cloud algorithms.

The simulator developed during this project enables us to build a
ground truth that can be used to verify the correctness of algorithms
on a per measurement (per point in a point-cloud) basis. Since most
of the currently available algorithms are tested on recorded (usually
not publicly available) sensor data and algorithmic evaluations rely
on visual inspection of the results, this simulator will enable a bet-
ter comparative analysis. In addition, it can be used to do an exact
quantitative and qualitative analysis of the algorithm output.

Some authors tackle that problem by implementing their own sensor
simulations, but most home-brewed approaches follow unrealistic sim-
plifications, like using subdivision methods to generate point clouds.

The software we developed represents an approach to tackle that
shortcoming: we provide a unified simulation and modeling envi-
ronment which is capable of simulating several different types of
sensors, carefully considering their special (physical) properties. This
is achieved by integrating the simulation tool directly into Blender1,
a 3-D content creation suite. With this combination it is possible to
model the test scenarios with arbitrary level of detail and immediately
simulate the sensor output directly within the modeling environment.
The Blender Sensor Simulation (BlenSor) 2 toolkit is completely inte-
grated within Blender (see Fig. 47a) and does not require any custom
scripts or tedious editing of configuration files to adjust the sensors.
Yet, it is possible to access the underlying scanning functionality from
custom code in case researchers want to modify the core functionality.

The strong focus on offline data creation for algorithm development
and testing allows BlenSor to focus on usability and features. BlenSor

does not need to satisfy any external dependencies required to enable
compatibility with robotics frameworks for instance. The output is
either i) written to a file (in a format explained in Section 6.3.7) or ii)
added as a mesh within the sensor simulation. This facilitates direct
interaction with the simulated (i.e scanned) data. Even though real-
time capabilities have been left out on purpose, the simulation can be
used together with Blender’s physic engine, thus enabling to simulate
complex scenarios with physical interaction of objects.

1 http://www.blender.org

2 http://www.blensor.org

http://www.blender.org
http://www.blensor.org

6.2 simulation 72

(a) Every sensor has differ-
ent parameters, which can
easily be modified and
which are stored in a blend
file

(b) Example of a simple scan simulation. Single
scans can be directly viewed and manipu-
lated (and even analyzed) within Blender.

Figure 47: The sensor simulation interface is a part of the Blender GUI. It can
be used just like any other feature of Blender.

6.2 simulation

Compared to robot simulation software ([9, 55]), BlenSor focuses on
the simulation of the sensors themselves rather than the interaction
of sensor-equipped robots with the environment. In fact, we are able
to care a lot more about specific sensor properties, since there are
no real-time constraints. Such properties are for example a realistic
noise model, physical effects like reflection, refraction, reflectivity and
sophisticated casting of rays that do not just describe a circle around
the scanning center. The simulation accuracy can be increased with
simple changes to the sensor code if features that are not yet available
are required. The implementation details of the various sensor types
in the following sections describe the simulation state at the time of
writing. Due to the strong focus on offline simulation, we are able to
simulate scenarios with a higher degree of detail than what is currently
possible with existing robot simulators (e.g. MORSE ([9]).

6.3 scanning principle

Some sensors simulated by BlenSor basically rely on the fact that the
speed of light is finite and that light is at least partially reflected from
most surfaces. To be more specific, the measured reflection is affected
by i) the traveling distance of the emitted light, ii) the amount of light
arriving at the sensor and iii) the precise measurement time. In general,
one or more rays of light are emitted from a range measurement device
in the form of a light pulse. The rays travel along straight lines to
a potential object. Once the rays hit an object, a fraction of the light
gets reflected back to the sensor, some part gets reflected in different
directions, and another part may pass through the object (in the case
of transparent materials) in a possibly different direction.

6.3 scanning principle 73

BLENSOR ADDON BLENDER

Depthmap

Ibeo - Sick
ToF - Camera

Velodyne HDL64
Kinect

scan interface native blensor functions

raycasting

model - animation
physics simulation

internal renderer

Figure 48: Interaction between BlenSor and Blender

This is in fact closely related to ray-tracing techniques in computer
graphics. Thus the modification of a ray-tracing program to match the
sensor characteristics seems just natural. Although Blender provides an
interface to cast rays from within the Python programming language,
the functionality is limited and runtime performance inevitably suffers
due to the computational demand to simulate a huge number of laser
rays. BlenSor tackles this problem by patching the Blender code-base,
shown in Figure 48, to provide an interface that can cast an arbitrary
number of rays simultaneously. It also allows Python code to access
material properties of the faces that are hit by the rays. For increased
efficiency, reflection is handled directly within Blender. By using this
interface, the sensors developed using the Python interface can set
up an array of ray directions and hand the actual ray-casting over
to the patched Blender core. Then, a ray-tree is built by Blender to
allow efficient ray-casting. This modification processes all rays (and
calculates reflections if needed) and returns the distances of the hits as
well as the objectID for each ray. Eventually, the sensor code calculates
sensor dependent noise and other physical features. This is described
in the following sections.

6.3.1 Rotating LIDAR

A rotating LIDAR has a sensor/emitter unit rotating around the center
of gravity and thus creates a 360◦ scan of the environment. As a repre-
sentative of this class of sensor type, BlenSor implements a Velodyne
HDL-64E S2 scanner. This sensor can detect objects with a (diffuse)
reflectivity of 10% (= rlower) at a distance of 50 meter (= dlower) and
objects with a (diffuse) reflectivity of 80% (= rupper) at a distance
of 120 meter (= dupper). As already mentioned, the amount of light
reflected back to the sensor depends on the distance of the object.
The decrease in reflected light is compensated within the scanner
electronics by lowering the threshold during the scan interval. Un-
fortunately, this process can not be correctly reproduced by BlenSor,
since the information about threshold adaption is not available from
the manufacturer. It is, however, possible to approximate this process

6.3 scanning principle 74

M
at

er
ia

l
re

fl
ec

ti
v
it

y
%

Distance meters

rlower

rupper

dlower dupper

VISIBLE

INVISIBLE

rm
in

Figure 49: Reflectivity model based on surface distance

by means of linear interpolation of the minimum required reflectivity.
We use the 10% and 80% marks listed in the data sheet of the sensor.
Objects closer than 50 meters are detected as long as their reflectivity
is > 0%. Objects at a distance (dist) between 50 and 120 meters are
detected if their reflectivity is = rmin(dist) (Figure 49), according to
Equation (6.1). These values can easily be adapted by the user, if an
empiric evaluation of the sensor provides different results than the
information from the manufacturer, or if the user wants to simulate a
different environment like haze or fog. As this effect is calculated on a
per-ray basis, it is even possible that a single object is only partially
visible if it has a low reflectivity and is far away from the scanner (cf.
Figure 50).

rmin(dist) = rlower +
(rupper − rlower) · dist

dupper − dlower
(6.1)

Once all rays have been cast, we have to impose sensor-specific
errors to the clean measurements (distreal). Our error model currently
consists of two parts. The first part is a distance bias (noisebias) for each
of the 64 laser units. This bias remains the same in each rotation, but
the noise characteristics can be changed by the user. Experiments with
a real Velodyne HDL-64E S2 revealed that the reported z-distance of
a plane normal to the laser’s z-axis may differ up to 30 centimeters
for any two laser units (combination of a laser and a detector). This
is close to the actual numbers provided in the sensor fact sheets. The
second part of our error model accounts for the fact that each single
measurement (distnoisy) is subject to a certain noise as well. Thus, a
per-ray noise (noiseray) is applied to the distance measurements. The
final (noisy) distance is formally given by

distnoisy(yaw, pitchi) = distreal(yaw, pitchi) + εbias,i + εray (6.2)

with εbias,i ∼ N (0, σbias) and εray ∼ N (0, σray), where N (µ, σ) denotes
a Normal distribution with mean µ and variance σ.

6.3 scanning principle 75

10%

Reflectivity
20%

Reflectivity

Reflectivity below

threshold for given

distance

Just enough reflectivity to

produce an echo at the given

distance

Figure 50: Objects with low reflectivity

0

2

4

6

8

10

0.019688

0.039062

0.058437

0.077812

0.097187

0.116562

0.135937

0.155313

0.174687

0.194063

0.213438

0.232813

0.252188

0.271563

0.290938

0.310312

Distance correction (m)

Distribution of distance corrections

Figure 51: Distribution of distance corrections from the Velodyne configura-
tion

6.3.1.1 Simulated versus real data

The parameters for the simulated Velodyne are derived from the
calibration data provided by the manufacturer. Figure 51 shows a
histogram of distance correction values from the calibration data which
are distance correction values for the 64 lasers. Using this information
we are able to derive µ and σ for the Normal distribution and use
them as the configuration for the simulated scanner. The calibration
data leads to µ = 0.167422 meters and σ = 0.063108. To compare the
quality of the simulation to real world data, we are scanning a real wall
with the HDL-64E S2 as well as a simulated wall with the simulated
Velodyne three meters away from the scanner.

The Velodyne scanner used for the comparison is not the same as the
one from which the configuration data was extracted to prevent a too
strong bias towards the measured data. We can see in Figure 52, which
shows the histograms of the errors in the distance measurements to the

6.3 scanning principle 76

0

2

4

6

8

10

12

0.029
0.038

0.047
0.056

0.065
0.074

0.083
0.092

0.101
0.111

0.120
0.129

0.138
0.147

0.156
0.165

0.174
0.183

0.192
0.202

0.211
0.220

0.229
0.238

0.247
0.256

0.265
0.274

0.283
0.293

0.302
0.311

P
er
ce
n
t

Distance correction (m)

Simulation
Original

Figure 52: Comparison of distances errors between a real and simulated scan
of a wall

0

2

4

6

8

10

12

-0.311

-0.302

-0.292

-0.283

-0.274

-0.265

-0.256

-0.247

-0.238

-0.229

-0.220

-0.211

-0.202

-0.192

-0.183

-0.174

-0.165

-0.156

-0.147

-0.138

-0.129

-0.120

-0.111

-0.101

-0.092

-0.083

-0.074

-0.065

-0.056

-0.047

-0.038

-0.029

P
er
ce
n
t

Normal distance to plane (m)

Simulation
Original

Figure 53: Comparison of normal distances from a real and simulated scan
to a wall

6.3 scanning principle 77

three meter wall, that both scanners have very similar characteristics.
This is of course expected since the simulated distance error is applied
to the correct measurements and the error values are drawn from a
Gaussian distribution. But such a result would also be possible for
data that does not look like the scanned surface. We need to compare
values that are also dependent on the angle at which the rays hit the
surface. We chose the normal distance from the plane to the points for
this task. The normal distance of a measurement to the plane depends
not only on the depth measurement but also on the angle at which
the ray hits the surface. It is apparent from the histogram in Figure 53

that the normal distances of the measurements to the plane are very
similar in the simulated and the real scan. This, in combination with
the comparison of the distances errors, suggests that the simulated
scans have a characteristic very similar to the real scans.

6.3.2 Line LIDAR

Representative for the Line LIDAR type sensors, BlenSor implements
a hybrid scanner that can be best described as a combination of an
Ibeo LUX and a SICK LMS sensor with a few modifications. According
to the fact sheet of the Ibeo LUX sensor, it can detect obstacles with
a (diffuse) reflectivity of 10% up to 50 meters and has an average
scanning distance of about 200 meters.

The basic principle of measuring distances is described in Section
6.3.1. A Line BlenSor, however, implements a slightly different method
to direct the rays. In contrast to the Velodyne HDL-64E S2 scanner,
the line scanner has fixed laser emitters which fire at a rotating mirror.
Depending on the position angle of the mirror, the rays are reflected
in different directions. The measurement itself is the same as in most
other laser-based time of flight distance measurement systems. We
highlight the fact that the rotating mirror does not only affect the yaw
angle of the laser beams, but also the pitch angle.

In its initial position (i.e., the yaw is 0◦) the mirror reflects the rays
at the same yaw angle and with the same pitch angle between the rays
as they are emitted by the lasers (cf. Figure 54a). When the yaw angle
of the mirror is in the range [0◦, 90◦], the rays have a yaw and pitch
angle which is different from the angles when emitted by the lasers
(cf. Figure 54b). Finally, when the mirror reaches a yaw angle of 90◦,
the pitch angle of all lasers becomes the same. The former pitch angle
between the lasers has become the yaw angle between the lasers (cf.
Figure 54c). The noise model for the measurements is the same as in
Section 6.3.1 due to the same scanning principle.

6.3 scanning principle 78

(a) α = 0◦ (b) α ∈ [0◦, 90◦) (c) α = 90◦

Figure 54: The pitch and yaw angles of the outgoing rays are affected by the
different yaw angle α of the mirror as it rotates. The angles of the
rays are unaffected only in the mirror’s initial position.

6.3.3 Time-of-Flight (ToF) Camera

In contrast to the BlenSor sensors of Sections 6.3.1 and 6.3.2, a Time of
Flight (ToF) camera does not need a narrowly focused beam of light
for its measurements. Consequently, ToF cameras do not use lasers to
emit the light pulse. Instead, the whole scene is illuminated at once
and the Time of Flight is measured with a special type of imaging
sensor. Compared to LIDAR sensors, a ToF camera has the advantage
of a substantial increase in resolution, however, at the cost of limited
measurement distance. In terms of simulation, a ToF camera does not
differ much from the other sensors, though. The sensor has a per-ray
noise, but a higher angular resolution. Some ToF cameras use the phase
difference of a modulated light signal to calculate the distance the light
has traveled. This simplifies the detector because it only needs to
be able to detect the phase difference of a moderately high frequency
(i.e. 20MHz) signal rather than the time a single pulse has traveled.
However, this has a big disadvantage. Since the ToF camera does not
pulse the light, but sends out a continuous modulated signal, the
phase-difference can only be measured within 0 and 2π, even though
the distance might be larger than the light can travel within a single
wavelength. Thus, the distance to the object is c∗(φ+n·2π)

ω where c is
the speed of light, φ is the measured phase distance and ω is the
modulation frequency. This may lead to ambiguities in the distance
measurements, because, if ω is for example tuned to a distance of 10
meters, a measurement of 15 meters would appear to the camera like
a measurement of 5 meters . This effect is called Back-folding: objects
at a certain distance may appear closer than they really are (cf. Figure
55). Back-folding can be enabled in BlenSor which causes all distance
measurements in the upper half of the maximum scanning distance to
be mapped into the lower half according to the following equation

6.3 scanning principle 79

Back-folding

Figure 55: Back-folding effect of Time-of-Flight cameras

distback f olding =

distreal , distreal <
maxdistance

2

distreal − maxdistance
2 , else.

(6.3)

6.3.4 Stereo sensors

This is a class of sensors that does not measure the time the light
travels, which could be seen as the direct way to measure distances,
but rather triangulates the distance of a point or object seen from two
different viewpoints. The term “seen from two different viewpoints” does
not necessarily mean that they are passively observed, but that there
is an uninterrupted path from both projection centers to the measured
point. In fact, several stereo sensors ([30]) use one active (projector) and
one passive component (camera) to perform the triangulation. In this
case, the projector emits a well-known pattern onto the scene, which is
then detected by the camera. The pattern has to be designed in such a
way that a small portion of the pattern is sufficient to locate its position
in the complete pattern that is projected. This way, the stereo system
knows which rays that are passing through the projection center
of the projector correspond to rays through the camera projection
center which in turn reproduce the pattern on the image sensor. In
combination with the known parameters (baseline, focal length, ...),
the 3D point can then be triangulated (in sensor coordinates).

Simulating such a sensor with a ToF camera is not sufficient because
the ToF camera needs only one path to the measured point, namely
the path from the projection center of the camera to the measured
point in the scene. They are shown as the strong black lines in the left
part of Figure 56. However, a stereo system needs to see the measured
point from both projection centers at the same time. If a part of an

6.3 scanning principle 80

Time of Flight Camera Camera Projector

Object1 Object1

Object2 Object2

Projector-shadow
from Object1
Projector-shadow
from Object1

Figure 56: Incomplete depth measurements in stereo setups due to occlusions

object is in the shadow from even one of the two projection centers,
no measurement is possible. This is an additional constraint that will
reduce the number of valid measurements compared to a Time-of-
Flight camera. An example is shown int Figure 56 as gray lines on
Object1 and Object2.

6.3.4.1 Simulating Stereo sensors with ray-tracing

We could cast rays from both projection centers onto the scene and
try to find matching points in the results. This is, however, a very
time-consuming task and would also process all points for which
clearly no measurement is possible due to occlusions. Our approach
does the scanning in a two step process.

1. Cast all rays from the projection center Cp (Figure 57) onto the
scene. Some may hit a target, while some may not. Two examples
are shown as points P1 and P′1 in Figure 57.

2. For all valid points that the projector generated, corresponding
rays from the camera center CC are cast onto the scene, shown
as r and r′ in Figure 57.

3. Those rays that intersect the scene in the same points as the
projector rays are valid measurements. In Figure 57, the points
P1 and P2 represent a valid measurement, whereas P′1 and P′2 are
not the same points because r′ hits a different surface before the
ray reaches the point P′1.

All corresponding camera/projector rays that meet in the same
point are (at least in theory) valid depth measurements. This does not
yet take into account the matching window but will correctly simulate
holes in the depth-map due to occlusions.

6.3 scanning principle 81

P1 = P2

P1Q after
quantization

P ′
1

P ′
1 6= P ′

2

occlusion

P ′
2

Quantization

Baseline

CCCP

r′r

r

Image Sensor

Quantization

rQ

rQ

u1Q u1

Figure 57: Scanning principle of the virtual stereo sensor

6.3.4.2 Disparity quantization

A stereo sensor measures the pixel position of a point either in both
sensors or in the sensor and implicitly in the projector (by knowing
where in the pattern the point came from). The accuracy of the mea-
surements is limited by the size of a sensor pixel. Even if the detection
is accurate to the sub-pixel level there is a dependency between the
depth measurement and the sensor properties. The ray r to point P1

in Figure 57 hits the image sensor in the point u1. Due to the limited
resolution of the sensor, this point can not be expressed in pixel coor-
dinates. The pixel which is illuminated most by the ray r is at position
u1Q . Subsequently, the stereo algorithm detects the point P1 through
the ray rQ. Instead of detecting the point P1, the quantization of the
image sensor results in a detection of the virtual point P1Q .

In case of the Microsoft Kinect Sensor this quantization is performed
not on a pixel level, but accurate to 1

8 th of a pixel. Even though
the detection is done on a sub-pixel level, there is still a substantial
quantization of the depth values, which can not be ignored. The
quantization of the simulated Kinect sensor is calculated as

dQ = sgn(d)
b|8 · d|+ 0.5c

8
(6.4)

where d is the real un-quantized disparity.

6.3.4.3 Matching window

Stereo systems are usually built from two cameras (passive stereo)
or a camera and a projector (active stereo). Independent of the type
of stereo system, the part that calculates the disparity between both
viewpoints must find unambiguous matchings between the views
([47]) . A common method to find correspondences in stereo pairs is a
block-based matching using for example Sum of Absolute Differences

6.3 scanning principle 82

(SAD) as a metric for similarity between two blocks. Although we
do not know exactly how the Kinect sensor works, we can observe
the pattern that is projected by the Kinect onto the scene. Using this
information and the patent [44], we can deduce that the Kinect sensor
uses a pseudo-random pattern of speckles. The information in [12]
suggests that the Kinect sensor might use different patterns depending
on the distance range that is detected. However the exact algorithm
that is used is not available to us.

To simulate the block-based matching between the views and the
projected speckle pattern, the simulator post-processes the disparity-
map. A pseudo-random speckle-map of size 640x480 with the same
speckle density as projected by a real Kinect sensor is used.

• Only values in the disparity-map that have a corresponding
speckle in the speckle-map are considered as a valid measure-
ment.

• For every potential valid measurement a certain amount of speck-
les within a 9x9 window around the point must have disparity
values that are within a certain threshold to the disparity of the
center pixel.

• If enough speckles with valid values are available the disparity
of the current speckle is calculated as a weighted average of the
valid disparities. The weight depends on the (x, y) distance of
the speckles to the center speckle.

• All disparity values that have no valid measurement are filled
as follows

d(p) =

valid stored value

invalid d(pi) :

‖pi − p‖ <
∥∥pj − p

∥∥
‖pi − p‖ < t

pi, pj ∈ stored values

(6.5)

where p is a (x, y) coordinate inside the disparity-map, valid
means a position in the disparity-map that has a corresponding
speckle in the speckle map and t is a threshold distance that is
determined empirically.

6.3.5 Reflection

A special property of all supported sensor types is the total reflection
of rays. If a ray hits a reflecting surface, it does not immediately
produce a measurement. Instead, the ray is reflected at the intersection
point with the object and may hit another object at a certain distance.
The ray might get reflected again, or not hit an object within the

6.3 scanning principle 83

Reflecting surface

Figure 58: Totally reflecting surfaces cause points to appear farther away

maximum scanning range. Figure 58 illustrates the case when several
rays reflected from an object hit another object with a reflectivity above
the necessary measurement threshold. As a result, the measured points
appear farther away than the object because the rays did actually travel
a greater distance. The sensor, however, does not know this fact and
consequently projects a virtual object behind the real one.

6.3.6 Color information

Most laser scanners provide some form of intensity value which may
provide information on the surface that was hit. This property is not
yet simulated by BlenSor but it can to some degree be emulated by using
color information from the model surfaces. Materials can be applied
to objects, surfaces or even individual faces. BlenSor uses the same
material configurations as Blender but only a subset of the parameters
is supported. Supported materials are

• Color materials which are defined by the diffuse color parameter.
This can be used to color objects, surfaces and faces with a single
Red Green Blue (RGB) color.

• Image texture materials can be mapped either as UV mapped
textures or by automatically mapping them based on generated
textures.

• Procedural texture materials are all material types that are gener-
ated by Blender internally. All procedural texture types from
Blender are supported by BlenSor which includes for example
simple noise (Figure 59a) based on random values, cloud noise

6.3 scanning principle 84

(a) Random values (b) Cloud noise (c) Voronoi noise

Figure 59: Example noise types in BlenSor

(Figure 59b) which provides a smooth noise and Voronoi noise
(Figure 59c).

The color information does also provide the reflectivity of the ma-
terial. The total energy of the color is used as the reflectivity. A com-
pletely black material has a reflectivity of 0%, whereas a completely
white material has a reflectivity of 100%. Furthermore, BlenSor can
combine all texture types with colored surfaces to non-uniformly ma-
nipulate the colored surfaces. This enables the simulation of materials
that do not have uniform reflectivity. For example, in Figure 64c the
walls and the floor are covered with a cloud material to introduce
some non-uniformity in the reflections.

6.3.7 Ground Truth

An important advantage of BlenSor is the ease at which the ground
truth for the simulated scenes can be generated. BlenSor currently
supports four output modes

1. The information about the real distance of a ray and the ob-
ject identifier of the hit object is stored along with the clean &
noisy real world data. Every measurement consist of 15 data
fields, the timestamp of the measurement, yaw and pitch angle,
the measured distance, the noisy distance, the x, y and z coordi-
nates of the measured points (i.e. clean data), the coordinates of
the noisy points, the objectID of the object that was hit with the
color (r, g, b) of the surface at the hit-point.

2. Output in PCD format which is the file format used by the
Pointclouds Library (PCL)[43]. Every scan is written into a sepa-
rate file which is further separated into a file with clean data and
a file with noisy data. Support for the PCD format makes it very
easy to use the generated data with the PCL library and allows
for easy algorithm testing.

6.4 building a simulation 85

3. Simulated Kinect data can also be exported as a 16-bit grayscale
image which corresponds to the depth-map. The 216 possible
values are scaled in such a way that they cover the maximum
scanning distance configured in the sensor panel.

4. BlenSor extends the Blender functionality to facilitate exporting of
a floating point depth map, rendered at an arbitrary resolution.
This depth map can then be used as a ground truth for many
algorithms that work on 2.5D data, such as the work of Dolson
et al. [8].

6.4 building a simulation

To build a static or dynamic scene for sensor simulation, we can rely on
the standard tools of Blender. Any object can be added to the simula-
tion and objects can be imported from other blend files. This resembles
the situation of a 3-D modeling artist building a scenery. Technically,
there is no limit on the level of scene detail (except RAM of course),
but too much detail will result in considerable simulation times. Some
material properties (for example the diffuse reflection parameter) have
an impact on the sensor simulation. The materials can be distributed
through blend files and we already made some available on the BlenSor
website. This enables other researchers to reuse the materials in their
own simulations. In BlenSor, the cameras are placeholders for the actual
sensor devices. Once the scene has been modeled and animated, the
user selects a camera that is going to impersonate the sensor, adjusts
its physical properties and eventually simulates the scanning process.
No editing of configuration files or any manipulation of scripts is
necessary. The simulation is started and configured directly from the
camera settings panel. If the simulation is run in single scan mode the
user has the option to add the ground truth and/or the noisy real
world data to the scene (cf. Figure 47b). This allows for a direct visual
verification of the simulation. The scene can easily be adjusted and
scanned again. Different scans can coexist in BlenSor, thus allowing a
direct comparison of different sensor parameters as well as the scene
itself.

6.4.1 Simulation accuracy versus processing costs

Sensors like ToF cameras and the Stereo-cameras scan the whole scene
at once. If we neglect the time it takes to acquire the information
(reflected light) from the scene, the scan happens at a single point in
time. Even if objects and the sensor are moving, the simulation of a
single scan does not need to handle this explicitly. This is, however,
not true for rotating LIDAR scanners which are continuously sending
out laser pulses, while the scanner rotates.

6.4 building a simulation 86

∆t = 40 ms ∆t = 10 ms ∆t = 5 ms

M
ov

em
en

t
(t

ra
n

sl
at

io
n

)

∆α

0ms

10ms

20ms

30ms

40ms

0ms

40ms

0ms

5ms

10ms

15ms

20ms

40ms

...

Figure 60: Scan area of a single scan at different simulation intervals

For example, if the scanner rotates with 10 Hz, it takes 0.1 seconds
for a single rotation. During this time, the whole scene may change (i.e.
moving cars). To capture this behavior correctly, one needs to split up
a rotation into smaller parts and update the scene after each of these
parts. A regular animation in Blender is rendered with 25 frames per
second. Thus, a scanner with a rotation speed of 10 Hz would cover
10
25 th of a rotation in a single frame. This is still coarse, but takes into
account that a complete rotation does not happen at a single point in
time.

These values can be configured arbitrarily based on the requirements
of the simulation.

• Setting the frame rate to the same value as the rotation speed
of the scanner will result in the maximum simulation speed. A
whole rotation will be scanned at once and then the animation is
updated, as shown in Figure 60 in the left most image. However,
this is a very coarse time resolution which may not be desired.

• Setting the frame rate to ω · 2·π
φ , where φ is the angular resolution

of the scanner, will result in the best possible simulation. For
every scanned angle, the animation is updated. However, this
will result in a very long simulation time.

The selection of a useful simulation interval heavily depends on the
simulated scenario. If only slowly moving objects or even a completely
static scene are simulated, the simulation interval may be extended to
cover the whole rotation. Lowering the simulation interval to represent
single angle increments of the scanner, however, will almost always
be above the practically required precision. For example a useful
simulation interval for a scanner mounted on a train that moves with
∼ 50km/h and that rotates with 25Hz would be 10ms. The train moves
with 13.8̄m/s and thus covers a distance of 13.8̄

25 = 0.55̄ meters within
one rotation. At a rotation speed of 25Hz, a single rotation takes
40ms, which means that it takes four simulation steps to cover a whole

6.4 building a simulation 87

(a) Overview (b) Wire-frame overlay

Figure 61: Street scene with 85903 vertices and 164166 faces

rotation at a simulation interval of 10ms which is shown in Figure
60 in the center. Between each simulation step the scanner moves
0.55̄

4 = 0.138̄ meters, which is also the maximum error introduced by
the simulation compared to a real scan. Because the last scanned angle
(∆α = π

2 in Figure 60) within a single simulation interval, should
originate from a scanner position that is 0.138̄ meters away from the
position where the first angle (∆α = 0 in Figure 60) was scanned.

An overview of the relation between simulation intervals and total
simulation time is given in Table 3 based on the scene in Figure 61. This
scene has 85903 vertices and 164166 faces. The scans have been done
on a version of the model that does not have any color information. A
colored rendering of the scene is shown in Figure 61a.

The pure simulation time without any output is shown in the first
row. The shortest possible simulation time at a rotation speed of 25Hz
is achieved with a simulation interval of 40ms, which amounts to a
complete rotation per simulation step and requires 6.158 seconds for
a rotation. If the output of the scan is also written to a file, a complete
rotation requires 7.385 seconds. Using a simulation interval of 1ms,
the simulation time increases to 84.09 seconds with a considerably
increased accuracy of only nine scanned degrees within a single sim-
ulation step. Fortunately, the simulation time does not scale linearly
with the inverse simulation interval. Comparing the 40ms case with
the 10ms case in Table 3, we can see that the simulation time roughly
doubles, while we achieve a fourfold increase in simulation accuracy.
In the 1ms case, the simulation interval is only 1

40 th of the coarse
simulation and simulation time increases roughly by a factor of 14.
The increase in time is not linear with respect to the increase of the
simulation accuracy, because the overhead for each scan (building the
ray-casting structures) is independent of the simulation interval. The
optimal choice for the simulation interval depends on the required
simulation-accuracy-simulation-time tradeoff.

6.5 experimental results 88

40 ms

Interval

10 ms

Interval

1 ms

Interval

Scan only 6.158s 11.965s 84.09s

Scan to file 7.385s 13.262s 85.289s

Table 3: Velodyne simulation times of a single rotation of the Street scene
with 25 Hz

6.4.2 Using the Physics Engine

Physics simulation is possible through the internal physics engine of
Blender. BlenSor can simulate any scene that can also be rendered. In
order to simulate physical processes, we just need to set up the physics
simulation and record the animation data, while the physics simulation
is running. This has the advantage that the physics simulation needs
to be run only once, while the actual sensor simulation can be run as
many times as necessary without the need to recalculate the physics.

6.4.3 Exporting Motion Data

To facilitate quantitative analysis of algorithms, it is necessary to know
the exact position and orientation of all (or at least the important)
objects in the simulation. The data of the objects can be exported
as a text file describing the state of an object over the scan interval.
The user may choose between exporting all or only a selection of the
objects in the scene. Exporting only selected objects may be beneficial
for large and complex scenes. To export only selected objects, the user
literally selects one or more objects within Blender and calls the Export
Motion Data functionality which was added by BlenSor.

6.5 experimental results

Our first experimental results in Figure 62a show a crossing scene with
four cars. The car closest to the camera is also the position of the sensor.
To demonstrate the strength of BlenSor, we use the Velodyne HDL-64E
S2 sensor to scan the scene. Figure 62b shows the scene scanned with
MORSE, Figure 62c shows the scene scanned with BlenSor. Compared
to the BlenSor results, it is clearly visible that MORSE uses only a
rudimentary simulation of the sensor. As a matter of fact, this is no real
surprise since the primary focus of MORSE is on real-time simulation
of whole robots and less on accurate simulation of sensors with all
their properties. The BlenSor scan in contrast shows a much denser
scan and a noise level similar to what we would expect with a real
Velodyne HDL-64E S2 sensor. It is also important to note that the
pitch angle of the laser sensors used by Velodyne is not evenly spaced.

6.5 experimental results 89

Velodyne Ibeo LUX Time-of-Flight Depth-map

8.462 [s] 4.943 [s] 5.290 [s] 11.721 [s]

Table 4: Processing time in seconds of different sensors in a complex scene.

Relying on an exemplary calibration file provided by Velodyne, we
distribute the pitch angles accordingly.

In our second experiment, illustrated in Figure 63, we scan a fairly
complex scene with 237000 vertices with different sensors. The terrain
has been modified by a displacement map to resemble an uneven
surface (e.g., an acre). Even though the scene is quite complex, the
scanning time for a single simulation interval (in this case 40ms) is still
between 4.9 and 12.8 seconds (see Table 4 for details). Scanning was
done on a Intel Core i5 2.53Ghz machine with 3 GB of RAM running
a Linux 2.6.31-14 kernel. The memory usage over the scan is 228 MB.

Our third experiment, shown in Figure 64, uses a rough reconstruc-
tion of the scene in Figure 64a modeled after the scene used in [10].
A rendered version of the model is shown in Figure 64c. The walls
and the floor are augmented with a procedural cloud noise texture to
simulate non-uniform reflectivity of surfaces. Using all features de-
scribed in Section 6.3.4, especially the disparity quantization and the
matching window, the simulator creates a virtual Kinect scan (Figure
64d) that has all the properties also present in a real Kinect depth
map (Figure 64b). The scan in Figure 64d shows shadows (occlusions)
along the guard railing, shorter visibility in certain areas due to differ-
ent material reflectivity and irregular object boundaries due to depth
interpolation and irregularly distributed speckles in the speckle map.

6.5.1 Reproducibility

One of the key motivations of developing BlenSor was to allow full
reproducibility of research results. BlenSor stores all sensor settings in
a blend file. Furthermore, the raw scan data can be provided as well in
order to allow other researchers to make comparative studies without
having to run the simulation again. Nevertheless, storing all needed
information in one compact file makes it extremely easy to share the
simulation setup. It further enables other researchers to easily modify,
adapt or extend the scenarios.

6.5.2 Scalability

Although sensor simulation is usually a resource intensive task, smaller
scenes are rendered almost in real-time by BlenSor. Larger and/or
more complex scenes may require substantially more processing time,
though. To cope with this problem, BlenSor is designed to allow dis-

6.5 experimental results 90

(a) Rendered scene

(b) Sim. using MORSE

(c) Sim. using BlenSor

Figure 62: Simulation of a simple scene with MORSE and BlenSor using the
implemented Velodyne HDL-64E S2 sensor.

6.5 experimental results 91

(a) Velodyne scan (b) Ibeo scan

(c) ToF camera scan (d) Rendered scene

(e) Ground-truth

Figure 63: Simulation of a scene with a large amount of vertices. The scene
consists of a rough terrain, simulating an acre, with a near collision
of two cars. The figures in the top row show the simulated sensor
output of BlenSor, the figures in the bottom row show the rendered
scene (i.e. the camera view) as well as the ground truth (i.e. a
2000× 2000 high-resolution depth map).

6.5 experimental results 92

(a) Original scene (b) Depth-map from a real Kinect

(c) Modeled scene (d) Depth-map from the simulated Kinect

Figure 64: Simulated Kinect versus real Kinect depth-map

tribution of the blend file to multiple hosts by splitting the simulated
time interval into corresponding sub-intervals. Since the parts are non-
overlapping, each host (or thread) can work on its specific sub-interval.
Since we do not make use of the processing power of the Graphics
Processing Unit (GPU) (which is usually the case for simulators that
rely on a game engine), we can run several instances of the simulation
on a multi-core machine at the same time as well.

Part V

C O N C L U S I O N

7
C O N C L U S I O N

In the previous sections we have shown how to calibrate different
types of sensors to each other and to the vehicle coordinate system.
We have also shown how the information from the sensors can be
classified into obstacles and non-obstacles by analyzing the tracks in
images. Furthermore, we introduced a sensor simulation that should
provide the basis for the analysis of algorithms that are used to detect
objects in data provided by 3-D sensors. The calibration techniques
are necessary to build a system for fusing the output of the different
sensors to a better view of the scene. In this final chapter we will take
a look at how the techniques from the previous chapters could be
used to improve obstacle detection. These are techniques for which it
is fair to assume that they would be successful, but further research is
needed to prove their correctness.

7.1 false positive detection

Even if the track is known very accurately, there are sometimes slight
deviations from the correct track in front of the train. This is especially
true when the track is calculated based on the current GPS position
from a priori knowledge, like a map of the railway. If the position
is only slightly off and the track is not just a straight segment, the
expected track will differ from the real track in front of the train. If
the positioning is solely based on GPS and odometry, this can hardly
be avoided since the GPS position is affected for example by trees that
occlude the line of sight to the GPS satellites and odometry on rails is
affected by the temperature, humidity etc.

Throughout our track, there are several spots that are prone to
errors due to mis-localization. Another big problem is the vegetation
that is sometimes so close to the track that it almost touches the
train. These objects can not be accurately classified into obstacles or
non-obstacles. A train operator will ignore such objects because of
additional knowledge that is not derived from the scene itself. The
train operator may have remembered that such an “obstacle” poses no
threat to the train and can safely be ignored.

To improve an autonomous system, we have to integrate such out-
side knowledge. If an object is classified as an obstacle although it is
in fact no real obstacle, the system should store this information in a
database and reclassify it as a non-obstacle the next time it is detected.

94

7.2 depth map estimation 95

7.2 depth map estimation

The joint IR camera, visible light camera and LIDAR calibration from
Section 3.1.3 provides the basis to combine data from three different
sensing technologies. Aside from classifying objects detected in one
sensor with corresponding data from other sensors, this can also be
used to improve the output of one or several sensors. One use-case is
to obtain high resolution depth maps by up-sampling a point cloud
using additional information from a visible light camera. Such an
approach is described in [8]. Our objective is to demonstrate that
by using IR images as an input to the algorithm, we obtain reliable
depth information for living objects even in environments with no
or bad light conditions. To simulate such a scenario, we choose an
underground parking garage where the only source of illumination
is an emergency light. In order to use the Bumblebee XB3 camera in
this scenario, we would have to adjust exposure time to a maximum,
consequently introducing an unacceptable amount of motion blur.

Regarding the parameter setting of the up-sampling algorithm, we
build position vectors pi as (g, u, v) for each IR image pixel where g
represents the intensity value of the pixel (and hence encodes the IR
information) and u, v represent the pixel location in 2-D. In contrast
to the original work, we do not have color information available and
further omit the time t in the composition of the position vectors.
The extension to a dynamic environment is out of the scope of this
work, but is straightforward in the framework of [8]. Obviously, range
values outside the IR image plane are discarded. Since the algorithm
performs an instance of Gaussian filtering, we have to set the standard
deviations for each dimension. As in [8], we perform a grid search to
determine the optimal parameters. Figure 65 shows a set of IR images
(top row) captured in the parking garage, as well as the corresponding
(dense) depth maps (bottom row).

To illustrate the difference in the depth maps when relying on
images from the (visible-light) Bumblebee XB3 camera, a low light
scenario is shown in Fig. 65. The images were acquired in the same
parking garage with only emergency light. In Figure 66b, we can see
that the camera picture is almost completely black, except for the
emergency light which illuminates a part of the car. In such a scenario,
the up-sampling code degenerates to a mere smoothing of the laser
range measurements. Consequently, the person standing in front of the
wall (see Fig. 66b) is almost invisible. In contrast, the up-sampled data
based on the IR camera image (see Fig. 66a) preserves the contours
of objects and thus the person clearly stands out from the wall. This
system is especially useful for the detection of humans (and living
objects in general) due to the fact that they emit a substantial amount
of IR radiation.

7.2 depth map estimation 96

(a) FLIR images. Parking garage with only emergency light

(b) Corresponding (dense) depth maps

Figure 65: FLIR images and corresponding depth maps (calculated using
the algorithm of [8]).

(a) using the PathfindIR IR image

(b) using the (visible-light) Bumblebee XB3 image

Figure 66: Depth map comparison of a scene (i.e. parking garage) where the
only source of illumination is emergency light (simulates night
conditions).

7.3 sensor simulation 97

Further research in this field should consider a combination of the
approach in [8] with our work by using the combined information of
a IR camera and a visible light camera to up-sample the information
from the LIDAR. This would not only provide a valid up-sampling in
bad lighting conditions, but also use the information from visible light
cameras which have usually higher resolutions than IR cameras and
may include color information as well.

7.3 sensor simulation

To our knowledge BlenSor includes one of the most accurate Kinect
simulations at the time of this writing. The simulators for the LIDAR

scanners are also very realistic, while still maintaining a high level
of usability. However simulation times are still a major aspect worth
improving. All calculations inside BlenSor, which includes the ray-
casting engine and all depth-map operations, are serialized, despite the
fact that most operations are independent of each other. For example,
the ray-casting of individual rays does not depend on other rays and
could be done in parallel. In fact Blender itself uses a master-worker
algorithm which calculates the whole image by splitting the rendering
region into smaller tiles. These tiles are distributed to several worker
threads, which evenly distribute rendering of a single image to all
CPU cores.

Splitting the internal operations of BlenSor into smaller parts that
can be calculated in several independent threads will provide serious
speed improvements and is thus a valuable direction in which BlenSor

development should be heading.

7.4 acknowledgements

We want to thank members from the “Institut für Mess- und Regelung-
stechnik” of the Karlsruhe Institute for Technology (KIT) for providing
Velodyne datasets and Maurice Fallon from the Computer Science and
Artificial Intelligence Laboratory (CSAIL) of the Massachusetts Institute
of Technology (MIT) for Kinect datasets.

Part VI

A P P E N D I X

A
P S E U D O - C O D E

99

pseudo-code 100

Algorithm A.1 Local maxima detection
for each slice do

tslice ← calculate 99% quantile of the horizontal gradients from
ten lines
end for
for every line in image do

for every point p in line do
local_max = false
for points 15 points to the left of p do

if value > v(p) then
localmax ← false
break

end if
if value < v(p)− tslice then

local_max ← true
break

end if
end for
if no local maxima then

break
end if
for points 15 points to the right of p do

if value > v(p) then
localmax ← false
break

end if
if value < v(p)− tslice then

local_max ← true
break

end if
end for
if local maxima then

mark point p
end if

end for
end for

pseudo-code 101

Algorithm A.2 Building track candidates and selecting the best one
Intitial candidate list c is empty
for every slice do

for every candidate pair in this slice do
m← centerline between pair
for every candidate in c do

fit curve to points of m and the candidate
if matchingscore < tc then

if candidate size > 2 segments then
update candidate

else
add new candidate

end if
end if

end for
fit curve to points of m and Izero

if matchingscore < tc then
add m with Izero to the candidate list

end if
end for

end for
if only one candidate has the biggest number of points then

result← candidate with biggest pointcount
else

best_candidates← candidates with biggest pointcount
result ← candidate with lowest matching value from

best_candidates
end if

pseudo-code 102

Algorithm A.3 Hough-map
. Initialisation stage

H ← N ×M array
for all parameters p do

for sampled points (x0, y0) of p do
for (x, y) ∈ 9× 9 window around (x0, y0) do

H(x, y, p)← max(H(x, y, p), weight(x, y))
end for

end for
end for

. Query stage
P← array of weights
I ← R× C image
for edge edge pixel (x, y) in image do

for all parameters,weights (p, w) in H(x · M
C , y · N

R) do
P(p)← P(p) + w

end for
end for
for all p in P do

p← p
#{(x,y):H(x,y,p)>0}

end for
track← p ∈ P : ∀v ∈ P, p ≥ v

B
F I G U R E S

103

figures 104

v

v

Input Line fitting

Rotation and translation Polynomial fitting

v

v

u u

u u

(u0, v0)

Figure 67: Fitting of a rotated polynomial

figures 105

v

u

v

u

u1

u2

v

u

Region of Interest

Rotated region of interest
with evaluation bounds

Backtransformed sampled points

Figure 68: Sampling of the rotated polynomials within a region of interest

figures 106

(a) (b)

(c) (d)

Figure 69: Examples from the Problematic trees scene. The first image is a
visualization of the detected track, the second image is the IPM
image and the last image is the result of the block based local
maxima detection without the track mask.

figures 107

(a) (b)

(c) (d)

Figure 70: Examples from the Winter scene. The first image is a visualization
of the detected track, the second image is the IPM image and the
last image is the result of the block based local maxima detection
after applying the track mask.

B I B L I O G R A P H Y

[1] Matthew Antone and Seth Teller. Scalable extrinsic calibra-
tion of omni-directional image networks. Int. J. Comput. Vi-
sion, 49(2-3):143–174, September 2002. ISSN 0920-5691. doi:
10.1023/A:1020141505696. URL http://dx.doi.org/10.1023/A:

1020141505696.

[2] Ilya Baran, Jaakko Lehtinen, and Jovan Popović. Sketching
clothoid splines using shortest paths. Computer Graphics Forum, 29

(2):655–664, 2010. ISSN 1467-8659. doi: 10.1111/j.1467-8659.2009.
01635.x. URL http://dx.doi.org/10.1111/j.1467-8659.2009.

01635.x.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal, pages 120–
126, November 2000.

[4] Chen Chao, Wang Junzheng, Chang Huayao, and Li Jing. Lane
detection of multi-visual-features fusion based on d-s theory. In
Control Conference (CCC), 2011 30th Chinese, pages 3047 –3052, july
2011.

[5] Yisong Chen, Horace Ip, Zhangjin Huang, and Guoping Wang.
Full camera calibration from a single view of planar scene. In
George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin,
Paolo Remagnino, Fatih Porikli, Jörg Peters, James Klosowski,
Laura Arns, Yu Chun, Theresa-Marie Rhyne, and Laura Mon-
roe, editors, Advances in Visual Computing, volume 5358 of Lecture
Notes in Computer Science, pages 815–824. Springer Berlin / Hei-
delberg, 2008. ISBN 978-3-540-89638-8. URL http://dx.doi.org/

10.1007/978-3-540-89639-5_78.

[6] H.-Y. Cheng, C.-C. Yu, C.-C. Tseng, K.-C. Fan, J.-N. Hwang, and B.-
S. Jeng. Environment classification and hierarchical lane detection
for structured and unstructured roads. IET Computer Vision, 4(1):
37–49, 2010. doi: 10.1049/iet-cvi.2007.0073. URL http://link.

aip.org/link/?CVI/4/37/1.

[7] Radu Danescu and Sergiu Nedevschi. Probabilistic lane track-
ing in difficult road scenarios using stereovision. Trans. In-
tell. Transport. Sys., 10(2):272–282, 2009. ISSN 1524-9050. doi:
http://dx.doi.org/10.1109/TITS.2009.2018328.

[8] J. Dolson, J. Baek, C. Plagemann, and S. Thrun. Upsampling
range data in dynamic environments. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition

108

http://dx.doi.org/10.1023/A:1020141505696
http://dx.doi.org/10.1023/A:1020141505696
http://dx.doi.org/10.1111/j.1467-8659.2009.01635.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01635.x
http://dx.doi.org/10.1007/978-3-540-89639-5_78
http://dx.doi.org/10.1007/978-3-540-89639-5_78
http://link.aip.org/link/?CVI/4/37/1
http://link.aip.org/link/?CVI/4/37/1

bibliography 109

(CVPR ’10), pages 1141–1148, San Francisco, CA, United States,
June 2010.

[9] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and
Séverin Lemaignan. Modular open robots simulation engine:
Morse. In International Conference on Robotics and Automation
(ICRA), pages 46–51. IEEE, 2011. URL http://dblp.uni-trier.

de/db/conf/icra/icra2011.html#EcheverriaLDL11.

[10] Maurice F. Fallon, Hordur Johannsson, and John J. Leonard. Effi-
cient scene simulation for robust monte carlo localization using
an rgb-d camera. In IEEE International Conference on Robotics and
Automation (ICRA 2012), pages 1663–1670. IEEE, 2012.

[11] M.A. Fischler and R.C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 24(6):
381–395, June 1981.

[12] Barak Freedman, Alexander Shpunt, and Yoel Arieli. Distance-
varying illumination and imaging techniques for depth mapping.
Patent Application, 11 2010. URL http://www.patentlens.net/

patentlens/patent/US_2010_0290698_A1/en/. US 2010/0290698

A1.

[13] Oliver Gebauer and Wolfgang Pree. Towards autonomously
driving trains. http://www.softwareresearch.net/fileadmin/

src/docs/publications/C086.pdf, 2008. Workshop for Research
on Transportation Cyber-Physical Systems.

[14] Andreas Geiger, Frank Moosmann, Omer Car, and Bernhard
Schuster. A toolbox for automatic calibration of range and camera
sensors using a single shot. In International Conference on Robotics
and Automation (ICRA), St. Paul, USA, May 2012.

[15] C. Glennie and D.D. Lichti. Static calibration and analysis of the
Velodyne HDL-64E S2 for high accuracy mobile scanning. Remote
Sensing, 2(6):1610–1624, June 2010.

[16] M. Gschwandtner, M. Liedlgruber, A. Uhl, and A. Vécsei. Experi-
mental study on the impact of endoscope distortion correction
on computer-assisted celiac disease diagnosis. In Proceedings
of the 10th International Conference on Information Technology and
Applications in Biomedicine (ITAB’10), Corfu, Greece, November
2010.

[17] M. Gschwandtner, R. Kwitt, W. Pree, and A. Uhl. Infrared camera
calibration for dense depth map construction. In Proceedings of
the IEEE Intelligent Vehicles Symposium (IV ’11), pages 857–862,
Baden-Baden, Germany, June 2011.

http://dblp.uni-trier.de/db/conf/icra/icra2011.html#EcheverriaLDL11
http://dblp.uni-trier.de/db/conf/icra/icra2011.html#EcheverriaLDL11
http://www.patentlens.net/patentlens/patent/US_2010_0290698_A1/en/
http://www.patentlens.net/patentlens/patent/US_2010_0290698_A1/en/
http://www.softwareresearch.net/fileadmin/src/docs/publications/C086.pdf
http://www.softwareresearch.net/fileadmin/src/docs/publications/C086.pdf

bibliography 110

[18] M. Gschwandtner, R. Kwitt, W. Pree, and A. Uhl. Blensor:
Blender sensor simulation toolbox. In Proceedings of the 7th
international conference on Advances in visual computing - Volume
Part II, volume 6939 of ISVC’11, pages 199–208, Berlin, Hei-
delberg, 2011. Springer-Verlag. ISBN 978-3-642-24030-0. URL
http://dl.acm.org/citation.cfm?id=2045195.2045219.

[19] Michael Gschwandtner, Wolfgang Pree, and Andreas Uhl. Track
detection for autonomous trains. In George Bebis, Richard Boyle,
Bahram Parvin, Darko Koracin, Ronald Chung, Riad Hammound,
Muhammad Hussain, Tan Kar-Han, Roger Crawfis, Daniel Thal-
mann, David Kao, and Lisa Avila, editors, Advances in Visual Com-
puting, volume 6455 of Lecture Notes in Computer Science, pages
19–28. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-17276-
2. URL http://dx.doi.org/10.1007/978-3-642-17277-9_3.

[20] Michael Gschwandtner, Jutta Hämmerle-Uhl, Yvonne Höller,
Michael Liedlgruber, Andreas Uhl, and Andreas Vecsei. Improved
endoscope distortion correction does not necessarily enhance
mucosa-classification based medical decision support systems. In
Proceedings of the IEEE International Workshop on Multimedia Signal
Processing (MMSP), Banff, Canada, 2012.

[21] E. Guillou, Daniel Meneveaux, Eric Maisel, and Kadi Bouatouch.
Using vanishing points for camera calibration and coarse 3d
reconstruction from a single image. The Visual Computer, 16(7):
396–410, 2000. URL http://dblp.uni-trier.de/db/journals/

vc/vc16.html#GuillouMMB00.

[22] Lie Guo, Ping-Shu Ge, Ming-Heng Zhang, Lin-Hui Li, and Yi-
Bing Zhao. Pedestrian detection for intelligent transportation
systems combining AdaBoost algorithm and support vector ma-
chine. Expert Systems with Applications, 39(4):4274–4286, March
2012. ISSN 09574174. doi: 10.1016/j.eswa.2011.09.106. URL
http://dx.doi.org/10.1016/j.eswa.2011.09.106.

[23] Joon H. Han, László T. Kóczy, and Timothy Poston. Fuzzy hough
transform. Pattern Recogn. Lett., 15(7):649–658, July 1994. ISSN
0167-8655. doi: 10.1016/0167-8655(94)90068-X. URL http://dx.

doi.org/10.1016/0167-8655(94)90068-X.

[24] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, ISBN: 0521540518, sec-
ond edition, 2004.

[25] Albert S. Huang and Seth J. Teller. Probabilistic lane estima-
tion using basis curves. In Yoky Matsuoka, Hugh F. Durrant-
Whyte, and JosÃ© Neira, editors, Robotics: Science and Systems.
The MIT Press, 2010. ISBN 978-0-262-51681-5. URL http:

//dblp.uni-trier.de/db/conf/rss/rss2010.html#HuangT10.

http://dl.acm.org/citation.cfm?id=2045195.2045219
http://dx.doi.org/10.1007/978-3-642-17277-9_3
http://dblp.uni-trier.de/db/journals/vc/vc16.html#GuillouMMB00
http://dblp.uni-trier.de/db/journals/vc/vc16.html#GuillouMMB00
http://dx.doi.org/10.1016/j.eswa.2011.09.106
http://dx.doi.org/10.1016/0167-8655(94)90068-X
http://dx.doi.org/10.1016/0167-8655(94)90068-X
http://dblp.uni-trier.de/db/conf/rss/rss2010.html#HuangT10
http://dblp.uni-trier.de/db/conf/rss/rss2010.html#HuangT10

bibliography 111

[26] Albert S. Huang, Edwin Olson, and David C. Moore. Lcm:
Lightweight communications and marshalling. In IROS, pages
4057–4062. IEEE, 2010. ISBN 978-1-4244-6674-0. URL http://

dblp.uni-trier.de/db/conf/iros/iros2010.html#HuangOM10.

[27] Fay Huang and Reen-Cheng Wang. Low-level image pro-
cessing for lane detection and tracking. In Arts and Technol-
ogy, volume 30 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, pages
190 – 197. Springer Berlin Heidelberg, 2010. doi: 10.1007/
978-3-642-11577-6_24.

[28] Gang Yi Jiang, Tae Younf Choi, Suk Kyo Hong, Jae Wook Bae,
and Byung Suk Song. Lane and obstacle detection based on
fast inverse perspective mapping algorithm. IEEE International
Conference on Systems, Man and Cybernetics, 4:2969 – 2974, 2000.
ISSN 1062-922X.

[29] Cláudio Rosito Jung and Christian Roberto Kelber. Lane following
and lane departure using a linear-parabolic model. Image Vision
Comput., 23(13):1192–1202, November 2005. ISSN 0262-8856. doi:
10.1016/j.imavis.2005.07.018. URL http://dx.doi.org/10.1016/

j.imavis.2005.07.018.

[30] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and
resolution of kinect depth data for indoor mapping applications.
Sensors, 12(2):1437–1454, 2012. ISSN 1424-8220. doi: 10.3390/
s120201437. URL http://www.mdpi.com/1424-8220/12/2/1437.

[31] King Hann Lim, Kah Phooi Seng, Li-Minn Ang, and Siew Wen
Chin. Lane detection and Kalman-based linear-parabolic lane
tracking. Intelligent Human-Machine Systems and Cybernetics,
International Conference on, 2:351–354, 2009. doi: http://doi.
ieeecomputersociety.org/10.1109/IHMSC.2009.211.

[32] Christian Lipski, Bjorn Scholz, Kai Berger, Christian Linz, Timo
Stich, and Marcus Magnor. A fast and robust approach to lane
marking detection and lane tracking. Image Analysis and Inter-
pretation, IEEE Southwest Symposium on, 0:57–60, 2008. doi: http:
//doi.ieeecomputersociety.org/10.1109/SSIAI.2008.4512284.

[33] Frédéric Maire. Vision based anti-collision system for rail track
maintenance vehicles. In AVSS, pages 170–175. IEEE Computer
Society, 2007. URL http://dblp.uni-trier.de/db/conf/avss/

avss2007.html#Maire07.

[34] P. Marion, R. Kwitt, B. Davis, and M. Gschwandtner. Pcl and
paraview - connecting the dots. In IEEE CVPR Workshop on Point
Cloud Processing (PCP ’12), pages 80–85, 2012.

http://dblp.uni-trier.de/db/conf/iros/iros2010.html#HuangOM10
http://dblp.uni-trier.de/db/conf/iros/iros2010.html#HuangOM10
http://dx.doi.org/10.1016/j.imavis.2005.07.018
http://dx.doi.org/10.1016/j.imavis.2005.07.018
http://www.mdpi.com/1424-8220/12/2/1437
http://dblp.uni-trier.de/db/conf/avss/avss2007.html#Maire07
http://dblp.uni-trier.de/db/conf/avss/avss2007.html#Maire07

bibliography 112

[35] James McCrae and Karan Singh. Sketching piecewise clothoid
curves. Computers & Graphics, 33(4):452–461, 2009.

[36] D. S. Meek and D. J. Walton. An arc spline approximation to a
clothoid. J. Comput. Appl. Math., 170:59–77, September 2004. ISSN
0377-0427. doi: 10.1016/j.cam.2003.12.038. URL http://dl.acm.

org/citation.cfm?id=1044207.1044210.

[37] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik
Dahlkamp, Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim
Hilden, Gabe Hoffmann, Burkhard Huhnke, Doug Johnston, Ste-
fan Klumpp, Dirk Langer, Anthony Levandowski, Jesse Levin-
son, Julien Marcil, David Orenstein, Johannes Paefgen, Isaac
Penny, Anna Petrovskaya, Mike Pflueger, Ganymed Stanek, David
Stavens, Antone Vogt, and Sebastian Thrun. Junior: The stan-
ford entry in the urban challenge. J. Field Robot., 25(9):569–597,
September 2008. ISSN 1556-4959. doi: 10.1002/rob.v25:9. URL
http://dx.doi.org/10.1002/rob.v25:9.

[38] David Moore, Edwin Olson, and Albert Huang. Lightweight
communications and marshalling for low-latency interprocess
communication. Technical Report MIT-CSAIL-TR-2009-041, MIT,
Cambridge, USA, Sep 2009.

[39] Frank Moosmann and Christoph Stiller. Velodyne SLAM. In
Proceedings of the IEEE Intelligent Vehicles Symposium, pages 393–
398, Baden-Baden, Germany, June 2011. URL http://www.mrt.

kit.edu/z/publ/download/Moosmann_IV11.pdf.

[40] N. Otsu. A threshold selection method from gray-level histogram.
IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, Jan-
uary 1979.

[41] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an
open-source robot operating system. In ICRA Workshop on Open
Source Software, 2009.

[42] Martin Rufli, Davide Scaramuzza, and Roland Siegwart. Auto-
matic detection of checkerboards on blurred and distorted images.
In IROS, pages 3121–3126. IEEE, 2008.

[43] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud
Library (PCL). In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Shanghai, China, May 9-13

2011.

[44] Erez Sali and Assaf Avraham. Three-dimensional mapping
and imaging. Patent Application, 10 2010. URL http://www.

patentlens.net/patentlens/patent/US_2010_0265316_A1/en/.
US 2010/0265316 A1.

http://dl.acm.org/citation.cfm?id=1044207.1044210
http://dl.acm.org/citation.cfm?id=1044207.1044210
http://dx.doi.org/10.1002/rob.v25:9
http://www.mrt.kit.edu/z/publ/download/Moosmann_IV11.pdf
http://www.mrt.kit.edu/z/publ/download/Moosmann_IV11.pdf
http://www.patentlens.net/patentlens/patent/US_2010_0265316_A1/en/
http://www.patentlens.net/patentlens/patent/US_2010_0265316_A1/en/

bibliography 113

[45] Joaquim Salvi, Xavier ArmanguÃ©, and Joan Batlle. A com-
parative review of camera calibrating methods with accuracy
evaluation. Pattern Recognition, 35(7):1617 – 1635, 2002. ISSN
0031-3203. doi: 10.1016/S0031-3203(01)00126-1. URL http://www.

sciencedirect.com/science/article/pii/S0031320301001261.

[46] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox for
easily calibrating omnidirectional cameras. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and System
(IROS ’06), pages 5695–5701, Beijing, China, October 2006.

[47] Yannic Schröder, Kai Berger, and Marcus Magnor. Super resolu-
tion for active light sensor enhancement. Bachelor thesis, March
2012.

[48] Yang Shang, Qifeng Yu, and Xiaohu Zhang. Analytical method
for camera calibration from a single image with four copla-
nar control lines. Appl. Opt., 43(28):5364–5369, Oct 2004. doi:
10.1364/AO.43.005364. URL http://ao.osa.org/abstract.cfm?

URI=ao-43-28-5364.

[49] Arne Suppé, Luis E. Navarro-Serment, and Aaron Steinfeld.
Semi-autonomous virtual valet parking. In Proceedings of the
2nd International Conference on Automotive User Interfaces and In-
teractive Vehicular Applications, AutomotiveUI ’10, pages 139–145,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0437-5. doi:
10.1145/1969773.1969798. URL http://doi.acm.org/10.1145/

1969773.1969798.

[50] S. Suzuki and K. Be. Topological structural analysis of digitized
binary images by border following. Computer Vision, Graphics,
and Image Processing, 30(1):32–46, April 1985. ISSN 0734189X.
doi: 10.1016/0734-189X(85)90016-7. URL http://dx.doi.org/10.

1016/0734-189X(85)90016-7.

[51] Sovira Tan, Jason Dale, Andrew Anderson, and Alan Johnston. In-
verse perspective mapping and optic flow: A calibration method
and a quantitative analysis. Image and Vision Computing, 24(2):
153 – 165, 2006. ISSN 0262-8856. doi: DOI:10.1016/j.imavis.2005.
09.023. URL http://www.sciencedirect.com/science/article/

B6V09-4HNSPMD-1/2/94a053eabb06b5bddacc4eaf93278893.

[52] R.Y. Tsai. An efficient and accurate camera calibration technique
for 3D machine vision. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR ’86),
pages 364–374, Miami Beach, FL, United States, June 1986.

[53] Fraunhofer Institut Verkehrs und Infrastruktursys-
teme. Hinderniserkennung für Schienenfahrzeuge.

http://www.sciencedirect.com/science/article/pii/S0031320301001261
http://www.sciencedirect.com/science/article/pii/S0031320301001261
http://ao.osa.org/abstract.cfm?URI=ao-43-28-5364
http://ao.osa.org/abstract.cfm?URI=ao-43-28-5364
http://doi.acm.org/10.1145/1969773.1969798
http://doi.acm.org/10.1145/1969773.1969798
http://dx.doi.org/10.1016/0734-189X(85)90016-7
http://dx.doi.org/10.1016/0734-189X(85)90016-7
http://www.sciencedirect.com/science/article/B6V09-4HNSPMD-1/2/94a053eabb06b5bddacc4eaf93278893
http://www.sciencedirect.com/science/article/B6V09-4HNSPMD-1/2/94a053eabb06b5bddacc4eaf93278893

bibliography 114

http://www.ivi.fhg.de/frames/german/projects/produktbl/

hinderniserkennung.pdf, 2005.

[54] Christopher Urmson, Joshua Anhalt, J. Andrew (Drew) Bag-
nell, Christopher R. Baker , Robert E Bittner, John M Dolan,
David Duggins, David Ferguson, Tugrul Galatali, Hartmut
Geyer, Michele Gittleman, Sam Harbaugh, Martial Hebert,
Thomas Howard, Alonzo Kelly, David Kohanbash, Maxim
Likhachev, Nick Miller, Kevin Peterson, Ragunathan Rajku-
mar, Paul Rybski, Bryan Salesky, Sebastian Scherer, Young-
Woo Seo, Reid Simmons, Sanjiv Singh, Jarrod M Snider, An-
thony (Tony) Stentz, William (Red) L. Whittaker, and Jason
Ziglar. Tartan racing: A multi-modal approach to the darpa ur-
ban challenge. Technical Report CMU-RI-TR-, Robotics Institute,
http://archive.darpa.mil/grandchallenge/, April 2007.

[55] R. Vaughan. Massively multi-robot simulation in stage. Swarm
Intelligence, 2(2):189–208, December 2008.

[56] Yue Wang, Dinggang Shen, and Eam Khwang Teoh. Lane detec-
tion using spline model. Pattern Recogn. Lett., 21(9):677–689, July
2000. ISSN 0167-8655. doi: 10.1016/S0167-8655(00)00021-0. URL
http://dx.doi.org/10.1016/S0167-8655(00)00021-0.

[57] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. Lane de-
tection and tracking using b-snake. Image Vision Comput., 22(4):
269–280, 2004.

[58] Ji Zhang and Dezhen Song. Error aware monocular visual odom-
etry using vertical line pairs for small robots in urban areas.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2010). AAAI Press, 2010.

[59] Z. Zhang. A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):
1330 – 1334, November 2000.

[60] Yong Zhou, Rong Xu, Xiaofeng Hu, and Qingtai Ye. A robust
lane detection and tracking method based on computer vision.
Measurement Science and Technology, 17(4):736, 2006. URL http:

//stacks.iop.org/0957-0233/17/i=4/a=020.

http://www.ivi.fhg.de/frames/german/projects/produktbl/hinderniserkennung.pdf
http://www.ivi.fhg.de/frames/german/projects/produktbl/hinderniserkennung.pdf
http://dx.doi.org/10.1016/S0167-8655(00)00021-0
http://stacks.iop.org/0957-0233/17/i=4/a=020
http://stacks.iop.org/0957-0233/17/i=4/a=020

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	1 Introduction
	1.1 Vehicle
	1.2 Sensors
	1.2.1 Velodyne
	1.2.2 IBEO
	1.2.3 Infrared
	1.2.4 Monocular cameras
	1.2.5 Stereo cameras

	1.3 Processing platform
	1.3.1 ROS
	1.3.2 LCM

	1.4 Visualization

	Calibration
	2 Camera calibration
	2.1 Pinhole camera model
	2.1.1 Re-projection error

	2.2 Calibration
	2.2.1 Checkerboard pattern
	2.2.2 Far-infrared camera calibration

	3 Sensor to vehicle calibration
	3.1 Camera to vehicle calibration
	3.1.1 Extrinsic calibration through point correspondences
	3.1.2 Extrinsic calibration through parallel lines
	3.1.3 Joint LIDAR and camera calibration
	3.1.4 Experiments

	Track detection
	4 Obstacles
	4.1 Loading Gauge
	4.2 Track clearance
	4.2.1 Naive approach: static outline
	4.2.2 Dynamic outline

	5 Track Detector
	5.1 Comparison Street vs. Railway
	5.2 Inverse Perspective Mapping
	5.3 Pre-processing
	5.4 Dynamic mask
	5.5 Local maxima search
	5.5.1 Block based thresholds

	5.6 Blob detection (connected components)
	5.7 Line-segment fitting
	5.8 Line-segment filtering
	5.9 Curve fitting
	5.9.1 Polynomial fitting
	5.9.2 Rotated polynomial curve
	5.9.3 Track candidates

	5.10 Hough Map
	5.11 Results

	Sensor simulation
	6 Sensor Simulation
	6.1 Motivation
	6.2 Simulation
	6.3 Scanning principle
	6.3.1 Rotating LIDAR
	6.3.2 Line LIDAR
	6.3.3 Time-of-Flight (ToF) Camera
	6.3.4 Stereo sensors
	6.3.5 Reflection
	6.3.6 Color information
	6.3.7 Ground Truth

	6.4 Building a simulation
	6.4.1 Simulation accuracy versus processing costs
	6.4.2 Using the Physics Engine
	6.4.3 Exporting Motion Data

	6.5 Experimental Results
	6.5.1 Reproducibility
	6.5.2 Scalability

	Conclusion
	7 Conclusion
	7.1 False positive detection
	7.2 Depth Map Estimation
	7.3 Sensor simulation
	7.4 Acknowledgements

	Appendix
	A Pseudo-code
	B Figures
	Bibliography

